Oenkenstein Audio

DICE ANALOG SYNTHESIZER

Operation Manual

Trademark disclaimer:

* All product names used are trademarks of their respective owners, and in no way constitutes an association or affiliation with Oenkenstein Audio or Reason Studios.

The information in this document is subject to change without notice and does not represent a commitment on the part of Oenkenstein Audio. ©2023 Oenkenstein Audio. All rights reserved.

Content

1	Intro	oduction	. 1
	1.1	Description	. 1
	1.2	Specifications	. 1
2	Fron	t Panel	
	2.1	Panels Overview	. 3
	2.2	1 - Randomize and Seed Percentage	. 4
	2.3	2 - Oscillators Panel Overview	
	2.4	3 - Oscillator Tuning Modulation and LFO Panel Overview	. 6
	2.5	4 - Effects and Output Panel Overview	
3	Pane	els, rows and sections	. 8
	3.1	Panel 1, Randomize and Seed Percentage	. 8
	3.2	Panel 2, Row 1: Sine Oscillator	
	3.2.1	1 Section 1: Oscillator Type (1)	. 9
	3.2.2	2 Section 2: Oscillator Tune (2)	. 9
	3.2.3		
	3.2.4	0(7)	
	3.2.5	5 Section 5: Oscillator Amplitude Envelope (5)	. 9
	3.2.6	5 Section 6: Filters (6)	10
	3.2.7	7 Section 7: Bode Frecuency Shifter (7)	11
	3.2.8	Section 8: Send Sine To and Bend (8)	12
	3.3	Panel 2, Row 2: PWM Oscillator	
	3.3.1	1 Section 1: Oscillator Type (1)	13
	3.3.2	2 Section 2: Oscillator Tune (2)	13
	3.3.3	3 Section 3: Oscillator Volume (3)	14
	3.3.4	0(1)	
	3.3.5	5 Section 5: Oscillator Amplitude Envelope (5)	14
	3.3.6	5 Section 6: Filters (6)	15
	3.3.7	7 Section 7: Bode Frecuency Shifter (7)	16
	3.3.8	Section 8: Send Pulse To and Bend (8)	16
	3.4	Panel 2, Row 3: Triangle Oscillator	17
	3.4.1		
	3.4.2		
	3.4.3		
	3.4.4	8(1)	
	3.4.5	5 Section 5: Oscillator Amplitude Envelope (5)	18
	3.4.6	5 Section 6: Filters (6)	19
	3.4.7		
	3.4.8	Section 8: Send Triangle To and Bend (8)	21
	3.5	Panel 2, Row 4: Sub Oscillator	
	3.5.1		
	3.5.2	2 Section 2: Oscillator Tune (2)	22
	3.5.3		
	3.5.4	8(1)	
	3.5.5	5 Section 5: Oscillator Amplitude Envelope (5)	23
	3.5.6		
	3.5.7	7 Section 7: Bode Frecuency Shifter (7)	24

DICE Analog Synthesizer Operation Manual

	3.5.8	8 Section 8: Send Sub To and Bend (8)	25
	3.6	Panel 2, Row 5: Noise Oscillator	26
	3.6.2	1 Section 1: Oscillator Type (1)	27
	3.6.2	2 Section 2: Oscillator Volume (3)	27
	3.6.3	3 Section 3: Oscillator Panning (4)	27
	3.6.4	4 Section 4: Oscillator Amplitude Envelope (5)	27
	3.6.5	5 Section 5: Filters (6)	28
	3.6.6	6 Section 6: Bode Frecuency Shifter (7)	29
	3.6.7	7 Section 7: Send Noise To and Bend (8)	30
	3.7	Panel 2, Row 6: Super Saw Oscillator	30
	3.7.2	1 Section 1: Oscillator Type (1)	31
	3.7.2	2 Section 2: Oscillator Tune (2)	31
	3.7.3	3 Section 3: Oscillator Volume (3)	31
	3.7.4	4 Section 4: Oscillator Panning (4)	32
	3.7.5	5 Section 5: Oscillator Amplitude Envelope (5)	32
	3.7.6		
	3.7.7	7 Section 7: Bode Frecuency Shifter (7)	33
	3.7.8		
	3.8	Panel 3, Oscillator Tuning Modulation and LFO panel	
	3.9	Panel 3, Pitch Wheel Control	
	3.9.2	-	
	3.10	Panel 3, Bend	
	3.10	-	
	3.11	Panel 3, LFO	
	3.11		
	3.12	Panel 3, Glide	
	3.12	-	
	3.13	Panel 4, Effects and Output Panel	
	3.14	Panel 4, Delay	
	3.14		
	3.15	Panel 4, Reverb	
	3.15		
		Panel 4, Chorus	
	3.16		
	3.17	Panel 4, Output panel	
	3.17		
4		< of the device	
	4.1	Panels overview	
	4.2	Oscillators Panel Overview	
5		els, rows and sections	
	5.1	Panel 1, Row 1: Sine Oscillator	
	5.2	Panel 1, Row 2: PWM Oscillator	
	5.3	Panel 1, Row 3: Triangle Oscillator	
	5.4	Panel 1, Row 4: Sub Oscillator	
	5.5	Panel 1, Row 5: Noise Oscillator	
	5.6	Panel 1, Row 6: Super Saw Oscillator	
	5.7	Panel 2, Bend	
	5.8	Panel 3, Effects and Output Panel	
	5.0		τJ

DICE Analog Synthesizer Operation Manual

	5.9	Panel 3, Delay	46
	5.10	Panel 3, Reverb	46
	5.11	Panel 3, Chorus	46
	5.12	Panel 3, Audio Out	46
	5.13	Panel 3, CV Input Gate and Note	46
	5.14	Panel 3, CV Output Velocity and Key	47
	5.15	Panel 3: CV Input Volume	47
	5.16	Panel 4, Mod Envelope 1	47
	5.17	Panel 5, Mod Envelope 2	48
	5.18	Panel 6, Filters Compatible	48
	5.19	Panel 7, Randomizer Configuration Section	49
6	Pato	hes	52
	6.1	Randomizing Patches on the website	52
	6.2	Patch List	55
	6.3	The sound designers	56
	6.4	The Patches	56
7	Crec	lits	59
8	MID	I Implementation Chart	60
9	Devi	ce Remote information	64

1 Introduction

Dice Analog Synthesizer is a polyphonic synthesizer with a randomize function on the front and back panels, but also a web based randomize function.

1.1 Description

Dice Analog Synthesizer has 6 oscillators to generate sound without the use of samples. This device comes with a Sine, PWM (Pulse Width Modulation), Triangle, Sub, Noise and Saw oscillator.

To alter the sound generated by each oscillator, the synthesizer is provided with tuning, volume and panning knobs. It has an amplitude envelope section with AHDSR faders, a filter section, a Bode frequency shifter and an oscillator output routing section.

Dice Analog Synthesizer also contains 3 sections to change the tuning of the oscillators: Pitch Wheel control, Bend and Glide. A Low Frequency Oscillator (LFO) is used to modulate the filters cutoff and the glide time.

Dice Analog Synthesizer has 3 effects: Delay, reverb and chorus.

The back panel of the Dice Analog Synthesizer has audio outputs for each oscillator, a main stereo output, solo and mute buttons, a randomize configuration section, 53 CV inputs and 2 CV outputs.

Dice Analog Synthesizer comes with 160 instrument patches. Please notice: 30 combinator patches require Reason 12.

New to version 1.3.8 is the implementation of a on board randomize play and edit system.

Dice Analog Synthesizer also uses a web based form where the user can randomize patches, which can be loaded and altered in the Dice Analog Synthesizer.

1.2 Specifications

- 1. Minimal requirements for the Rack Extension: Duo Core based computer with at least 2 GHz processor, 4 GB of RAM and Reasonstudios Reason 10.2 or higher running on Windows or Mac OSX.
- 2. Type of device: Polyphonic Analog synthesizer.
- 3. Method of synthesis: Additive 16 bit.
- 4. Amount of oscillators: 6.
- 5. Pitch Wheel control.
- 6. Bend.
- 7. LFO (Low Frequency Oscillator).
- 8. Glide.
- 9. Sound modulation:
 - 6 Filter types.
 - Amplitude envelope (AHDSR)
 - Bode Frequency Shifter.
- 10. Effects:
 - Delay, Linear Reverb and Chorus,
- 11. Amount of modulation matrixes: 3
 - 1 slot in the Filters Cutoff section.
 - 1 slot in the Bode Frequency Shifter.
 - 1 slot in the Glide section.
- 12. Control Voltage In (CV In): 53.
- 13. Control Voltage Out (CV Out): 2.
 - Key.
 - Velocity (Vel).
- 14. Modulation Envelopes: 2.

	Seed F	Percen	tage		Init F	Patch				CE Oenkenstei		•	DICE 1
Osc	Tune	Vol	Pan	АН	D	SR		Filter	rs	e Frequer	ncy Shif	ter	Send
Sine		Q	٢				Mode LP24		viod Res ions 2	Mix Sft Mod		Mode Up	Send to Delay Bend
	Smi Fin	Ø	٢				Mode LP24	Q -	Viod Res ions	Mix Sft Mod		Mode Up	Send to Delay Bend
Tri	Smi Fin	Q	٢			T L ©	Mode LP24		Viod Res ions 2	Mix Sft Moe		Mode Up	Send to Delay Bend
Sub		Ø	٢				Mode LP24		Mod Res			Mode Up	Send to Delay Bend
Brown Noise		Ø	٢				Mode LP24		ions	Mix Sft Moo		Mode Up	Send to Delay
Saw Amt	Smi Fin	Ø	٢				Mode LP24		Viod Res ions	Mix Sft Mod		Mode Up	Send to Delay
Amount 2 Semi Pitch	Dest Tune	Bend	Depth			Ro Ro	Shape Sine LFO		Sync Trig	Glide Tim	e Mod Cons	Amt	Mode Auto
Delay	On Y	Free (Sync D	FBack	Ratio	Damp	Mix	Send To Chorus	Rev	on Time erb 📕 Ů	P Delay	Damp	Mix
Choru	nO Is E	Type Sine	Rate	Depth	Delay	Voices	Mix	Send To Reverb	Out	put	Poly	Tune	Volume

Dice Analog Synthesizer front panel:

Dice Analog Synthesizer back panel:

DICE	Analog	Synthe	531201	Dack	panei.									
-	DIC	E Analo	g Synthesi	zer Oc	nkenstein P	udio	Filter	rs Compa	tible 1.3 .				PICE 1	
	Osc	Tune	Vol	Pan	АН	DSR	Rnd	Cut	Res	Shift	Rng	Audio	o Out	
۲	Sine	0 *	0	0			▦	0	°	0	0 ×	S M Left	Right	Η
		0	0	0 X			▦	0	0 ×	0 ×	0	S M	O Right	В
	Tri	0 ×	0	0 ×	- 🗇 -	HDSR 🔢	▦	0	0 X	0 ×	0	S M	O Right	2
	Sub	0	0	0 ×	Edit	dit 96 Filters	▦	0 X	0 ×	0 ())	0 ×	S M Left	Right	
	Noise		0 ×	0 *	0	Shifter 🔢	₩	0 ×	0 X	0 X	0 N	S M Left	Right	
	Saw Detune 25 %	0 X	0	0 ×	96	Fx 🔢	₩	0 X	0 X	0 X	0 ×	S M Left	Right	
	Rey Li Pan	mit	Benc				•)enken/tein) serial no. м 96	e tranctation					2
	Delay		Free O		FBack	Ratio	Mix O		Revent	Time			Mix 0	
	Choru	is 🔢		Rate	Depth		Міх 0 🕅			00	V In O Note	CV Out	Volume	

2 Front Panel

		Seed	Percen	tage		Init P	atch	- 1	-		DIC	E ď	Analog Sy Denkenrte	nthesizer in Audio	•	DICE 1	
	Osc	Tune	Vol	Pan	АН	DS	S R	•	Filte	ers		e Fr	eque	ncy Sh	ifter	Send	
	Sine	Smi Fin	Q	٢				Mode LP24	Cut O ey Am	Mod Cons	Res	Mix	Sft Me	s 💰 🖉	ok Mode	Send to Delay Bend	0
		Smi Fin	Ø	٢				Mode LP24	Cut Q ey Am	Mod Cons	Res	Mix	Sft Mo	5 0 2	ok Mode	Send to Delay Bend	
	Tri	Smi Fin	0	٢	<u>↓</u> <u>↓</u>	6		Mode LP24	Cut	Mod Cons	Res	Mix	Sft Ma	5 0 2	ok Mode	Send to Delay Bend	
	Sub	Smi Fin	0	٢					Cut	Mod Cons	Res	Mix	Sft Mo	s 💰 🖉	ok Mode	Send to Delay	
	Brown Noise		Q	٢			- +2 O	Mode LP24	Cut ey Am	Mod Cons	Res	Mix	Sft Mo	s 💰 🤉	ok Mode	Send to Delay	
	Saw Amt	Smi Fin	Ø	٢			- -2 Ø	Mode LP24	Cut	Mod Cons	Res	Mix 2	Sft Mo	s 💰 🖉	ok Mode	Send to Delay Bend	
	2 Semi Pitch	Tune	Benc	Ú		oc Ø	RC C	3	0	DÚ)	Glid	e 🤇	Cons		Auto	
0	Delay	y 🦲	(D U	U	Hado	Camp	9	Send I Chorus	e F	Rever	b e			Camp C	Ó	
	Choru	on Is 📕	Type Sine	Rate	Depth		Voices	8	Send T Revent		Dutpi	ut		Poly Mono	Tune	Volume	

2.1 Panels Overview

- Randomize Switch and Seed Percentage knob (1).
- Patch Browser.
- Logo.
- Device name.
- MIDI Note indicator.
- Oscillators Panel (2) with:
 - Sine oscillator.
 - PWM (Pulse Width Modulation) oscillator.
 - Triangle oscillator.
 - Sub oscillator.
 - Noise oscillator.
 - Saw oscillator.
- Oscillator Tuning Modulation and LFO panel (3) with:
 - Pitch Wheel control.
 - o Bend.
 - o LFO.
 - o Glide.
- Effects and Output panel (4) with:
 - o Delay.
 - o Reverb.
 - o Chorus.
 - o Output.

2.2 1 - Randomize and Seed Percentage

🁖 🔮 Seed Percentage

- **Randomize Switch:** Toggles between to randomize Dice Analog Synthesizer or not (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- Seed Percentage: The Percentage determines the Seed Percentage to apply when randomisation is active. A low percentage setting (15 %) wil change the sound of the current patch slighty. A high percentage (90 %) wil change the sound drastically (Scale: 0 % / 100 %. Default = 50 %).

2.3 2 - Oscillators Panel Overview

The oscillators section consists of 6 rows

- Oscillators Rows (1 6) with:
 - 6 Oscillator types:
 - Sine oscillator.
 - PWM (Pulse Width Modulation) oscillator.
 - Triangle oscillator.
 - Sub oscillator.
 - Noise oscillator.
 - Saw oscillator.

*		Seed F	Percen	tage		Init F	'atch			BDI	C	- 0.	inalog Synt Inkenytei	n Audio		DICE 1	
	Usc	lune	VOI	Pan	АН	D 8	зн		Filte	rs		E Fre	equer	icy Shif	ter	Send	
		Smi Fin	-	10		-		Mode		Mod R	88	Mix s		I Rng Fbk			
9	Sine	0.0	21		AC	5	RC	LP24	GA	ions 🖉		\mathbf{D}	Cons	0 0	UP	Deta	-
	┹	~	9	T	٢	9	G	2 K	y V	0			Amt 😃			Bod	
	PWM Width	Smi Fin	(FD)					Mode			86	Mix 8		d Rng Fbk		Send to	
	Width	00			AC	DC	RC	LP24		Ions 🖉			Cons	0 🔎	UP	Delay	
	•		1	~	۷	Ø	•	2 к	ay Ame				Amt 🔮			Bend	
		Smi Fin	-	-		1		Mode	Cut I	Mod R	86	Mix 8	Sft Mod	d Rng Fbk	Mode	Send to	
	Tri	00			AC	oc	RC	LP24		ions 🖉		0	Cons	00	UP	Delay	
		-	\sim		۲	Ø	6	2 K	iy Ame				Amt 🕚			Bend	
		Smi Fin	-	-	1 1	1-		Mode	Cut I	Mod R	88	Mix 8	Sft Mod	d Rng Fbk	Mode	Send to	
	Sub	00			AC	oc	RC	LP24		ions 🖉		0	o Cons	00	UP	Delay	
			\sim	\sim	٢	Ø	6	2 K	iy Amt				Amt			Bend	
	Brown				1 1	1-		Mode	Cut I	Mod R	88	Mix 8	Sft Mod	d Rng Fbk	Mode	Send to	
	Noise				AC		RC	LP24		Ions	5	0	🗄 Cons	00	UP	Delay	
				\sim	٢	Ø	G	2 K	iy Amt			~	Amt	~~			
	Saw	Smi Fin			1 1	1.	-	Mode	Cut I	Mod R	86	Mix 8	Sft Mod	d Rng Fbk	Mode	Send to	
	Amt	6 6	0		AC		RC	LP24		Ions 🧯	5	0	🗄 Cons	00	Up	Delay	
	1	<u> </u>		\mathbf{i}	۷	ø	6	2 K	ay Ame				Amt U			Bend	
	Amount	Dest		Depth	1 1			Shape	Free	Sync Tr	ig		Tim	e Mod	Amt	Mode	
	2 Semi	Tune		(h)	AC	oc -	RC	Sine	100				6	Cons	(h)	Auto	
	Pitch		Benc		٢	۲	•	LFO				Glide	. 🤏		Y		
		On	Free	Sync	FBack	Ratio	Damp	Mix	Send To			On	Time	P Delay	Damp	Mix	
	Dela		6	a 4	4	(d)		A	Chorus	Re	ver	ъ 🗖	6	0			
0			-		~	Y	0	Y	citor as				Y			V	0
		On	Type	Rate	Depth	Delay	Voices	Mix	Send To						Tune	Volume	
	Choru	us 🗖	Sine	1	do.	(b)	0	(h)	Reverb	Ou	to	Jt		Poly	1	CA	
	Gridit			Y	-	Y	C a	Y	Never D		-p-			Mono	V		

The 6 oscillators are divided in smaller sections:

- Oscillator Type (1).
 Sine VVM
 Vidth
 Tri Sub Noise Amt
 1
- Oscillator Tune (2):
 - o Semi Tune,
 - o Fine Tune,
 - Oscillator Volume (3).
- Oscillator Panning (4).
- Oscillator Amplitude Envelope (5):
 - o Attack,

•

•

- o Attack Curve.
- o Hold,
- o Decay,
- Decay Curve.
- o Sustain,
- o Release,
- o Release Curve.
- Oscillator Filterts (6):
 - Filter Mode,
 - o Filter Key to Cutoff.
 - Filter Cutoff.
 - Filter Cutoff Modulation Source.
 - o Filter Cutoff Modulation Amount
 - o Filter Resonance,

• Oscillator Bode Frequency Shifter (7):

- Shifter Mix,
- o Shifter Shift.
- o Shifter Shift Modulation Source.
- o Shifter Shift Modulation Amount.
- Shifter Range,
- o Shifter Feedback.
- Shifter Mode.
- Oscillator Output Send To (8):
 - Send To Output Mode,
 - o Bend Switch.

2.4 3 - Oscillator Tuning Modulation and LFO Panel Overview

- Pitch Wheel Control (1):
 - Pitch Wheel Amount,
 - Pitch Wheel Destination.
- Bend (2):
 - o Bend Depth,
 - o Bend Modulation Envelope,
- LFO (3):
 - o LFO Shape,
 - o LFO Rate Free,
 - o LFO Rate Switch.
 - o LFO Rate Synced.
 - o LFO Retrig Switch.
- Glide (4):

- o Glide Time,
- o Glide Time Modulation Source,
- o Glide Time Modulation Amount,
- $\circ \quad \text{Glide Mode.}$

2.5 4 - Effects and Output Panel Overview

- Delay section (1):
 - o Delay Switch.
 - Delay Time Free.
 - Delay Time Switch.
 - Delay Time Synced.
 - o Delay Feedback.
 - Delay Ratio.
 - o Delay Damp.
 - Delay Mix dry / wet.
 - o Delay Output Send To.
 - Linear Reverb section (2):
 - Reverb Switch.
 - Reverb Time.
 - Reverb Pre Delay.
 - Reverb Damp.
 - Reverb Mix dry / wet.
 - Chorus sectionl (3):
 - Chorus Switch.
 - o Chorus Type.
 - o Chorus Rate.
 - o Chorus Depth.
 - o Chorus Delay Time.

- o Chorus Voices Amount.
- o Chorus Mix dry / wet
- Chorus Output Sent To.
- Output section (4):
 - Polyphonic/Monophonic Switch.
 - Limiter Switch.
 - Key To Panning
 - Tuning.
 - Volume.

3 Panels, rows and sections

Dice Analog Synthesizer is divided in panels, each with one or more rows with sections which are separated by vertical lines in the panel. A section provides and displays a set of various automatable controllers like rotating knobs, display's, pop up menus, On / Off buttons or switches and faders.

3.1 Panel 1, Randomize and Seed Percentage

📕 🔮 Seed Percentage

- **Randomize Switch:** Toggles between to randomize Dice Analog Synthesizer or not (Scale: Red dice = Off / Marine Blue.dice = On. Default = Off).
- Seed Percentage: The Percentage knob on the front panel or the Percentage fader on the back panel determines the Seed Percentage to apply when randomisation is active. A low percentage setting (15 %) wil change the sound of the current patch slighty. A high percentage (90 %) wil change the sound drastically (Scale: 0 % / 100 %. Default = 50 %).

3.2 Panel 2, Row 1: Sine Oscillator

The Sine oscillator row has 8 sections:

- Oscillator Type (1).
- Oscillator Tune (2):
 - Semi Tune,
 - o Fine Tune,
- Oscillator Volume (3).
- Oscillator Panning (4).
- Oscillator Amplitude Envelope (5):
 - o Attack,
 - o Attack Curve.
 - o Hold,
 - o Decay,
 - Decay Curve.
 - Sustain,
 - Release,
 - Release Curve.
- Oscillator Filterts (6):
 - Filter Mode,
 - Filter Key to Cutoff.
 - Filter Cutoff.
 - Filter Cutoff Modulation Source.
 - Filter Cutoff Modulation Amount
 - o Filter Resonance,
- Oscillator Bode Frequency Shifter (7):

- o Shifter Mix,
- o Shifter Shift.
- Shifter Shift Modulation Source.
- o Shifter Shift Modulation Amount.
- o Shifter Range,
- Shifter Feedback.
- o Shifter Mode.
- Oscillator Output Send To (8):
 - Send To Output Mode,
 - Bend Switch.

3.2.1 Section 1: Oscillator Type (1)

Sine

Shows the type and name of the oscillator.

3.2.2 Section 2: Oscillator Tune (2)

- **1: Smi Sine Tuning**: Determines the tuning or pitch of the oscillator in semitones (Scale: -36 / +36. Default: 0).
- **2:** Fin Sine Fine Tuning. Provides precise pitch adjustment (Scale: -50 / +50 cents. Default: 0).

3.2.3 Section 3: Oscillator Volume (3)

• 1: Sine Volume - Vol: Determines the oscillator volume (Scale: -∞ / 0,0 dB. Default: -∞ dB).

3.2.4 Section 4: Oscillator Panning (4)

• 1: Sine Pan - Pan: Determines the panning of the output (Scale: -100 / 100. Default: 0).

3.2.5 Section 5: Oscillator Amplitude Envelope (5)

• 1: A - Sine Attack: Determines the time that a sound takes to peak. When you press a key on your keyboard, the envelope is triggered. The attack parameter then controls how long it should take before the controlled parameter (pitch or filter) reaches the maximum value, when you press a key. By setting attack to a value of 0, the destination parameter would reach the maximum value instantly. By raising the Envelope Attack parameter, the value will instead

slowly slide to its maximum (Scale: 0 seconds / 16 seconds. Default: 0 seconds). Values in seconds (s) shown in the tool tip are based on the Sine Attack Curve set to 0 %.

- 2: H Sine Hold: Determines how long the controlled parameter should stay at its maximum value before starting to decrease again. This can be used in combination with the Envelope Attack and Envelope Decay parameters to make a value reach its maximum level, stay there for a while (Envelope Hold) and then start dropping gradually down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 0 seconds).
- **3: D Sine Decay**: Determines the time that the sound takes to fall from the peak to the Envelope Sustain level. After the maximum value for a destination has been reached and the Envelope Hold time has expired, the controlled parameter will start to gradually drop down to the Envelope Sustain level. How long it should take before it reaches the Envelope Sustain level is controlled with the Envelope Decay parameter. If the Envelope Decay is set to 0, the value will immediately drop down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 385 ms). Values in miliseconds (ms) shown in the tooltip are based on the Envelope Decay Curve set to 50 %.
- 4: S Sine Sustain: Determines the volume (relative to the peak) when the key is held down. The Envelope Sustain parameter determines the value the Amp Envelope should drop back to after the Envelope Decay. If you set Envelope Sustain to full level however, the Envelope Decay setting doesn't matter since the value will never decrease. A combination of Envelope Decay and Envelope Sustain can be used for creating envelopes that rise up to the maximum value, then gradually decrease to, and stay on a level somewhere in-between zero and maximum (Scale: -∞ / 0 dB. Default: 0 dB).
- 5: R Sine Release: Determines the time the sound takes to die out after the key is released. This works just like the Envelope Decay parameter, with the exception that it determines the time it takes for the value to fall back to zero after the key is released (Scale: 0 seconds / 16 seconds. Default: 59,8 ms).
- 6: AC Sine Attack Curve: Determines the curve for the Envelope Attack from a slow reach to the final value, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: 0 %). Typically 75 90% for logarithmic curves.
- 7: DC Sine Decay Curve: Determines the curve for the Envelope Decay from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.
- 8: RC Sine Release Curve: Determines the curve for the Envelope Release from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.

3.2.6 Section 6: Filters (6)

These are standard synthesizer filter modules, so you should already be familiar with their function and characteristics. In version 1.0.1 the filters cuttoff and resonance are limited. In the updated version 1.1.2 the limiter on the filters is removed, making Dice Analog Synthesizer brighter and aggresive. A Filters Compatible Switch is placed on the back panel.

- **1: Sine Filter Mode**:: Determines the filter type. There are 6 filter types (Default: LP24).
 - LP6 1-pole Lowpass filter.
 - LP12 2-pole lowpass filter
 - LP24 4-pole lowpass filter
 - HP6 1-pole highpass filter
 - HP12 2-pole highpasas filter
 - BP6 2-pole bandpass filter
- **2: Sine Key Filter Tracking**: the filter key tracking is a feature that allows the filter cutoff frequency to follow the pitch of the keyboard. This means that as you play higher or lower notes on the keyboard, the filter cutoff frequency changes proportionally to maintain the same

relative harmonic content in the sound. Set the amount to 31 for full keyboard tracking. (Scale: 0 / 31. Default: 0).

- 3: Sine Filter Cutoff: Detemines the frequency point above which the filter starts attenuating
 or reducing the amplitude of the sound's harmonic components. In other words, it controls the
 amount of frequency content that is allowed to pass through the filter. (Scale: 20 Hz / 25 kHz
 seconds. Default: 25 kHz).
- **4: Sine Filter Cutoff Mod Source**: Determines the source of the filter modulation. Choose one source from the following option list:
 - Cons = Constant maximum value, which is also the default option.
 - Rnd = Random bipolar value between -1 and +1.
 - Rnd+ = Random unipolar value between 0 and 1.
 - PB = Pitch Bend, incoming MIDI pitch bend.
 - Aft = Aftertouch, incoming MIDI channel pressure.
 - MW = Modulation Wheel.
 - Key = Keyboard position relative to C3. Value increases by 1.0 per octave.
 - Vel = Velocity, incoming MIDI velocity.
 - Amp = Amp Envelope curve shaped by the Delay, Attack, Hold, Decay, Sustain and Release settings.
 - LFO = LFO or Low Frequency Oscillator.
 - Md1 = Mod 1 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 1 Envelope section on the back panel.
 - Md2 = Mod 2 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 2 Envelope section on the back panel.
 - Gli = Glide curve.
 - NB = Note Bend envelope curve.
- **5: Sine Filter Cutoff Mod Amount**: Determines the amount of modulation (Scale: -100 / +100. Default: 0).
- 6: Sine Filter Reso: Determines the amount of emphasis or boost given to the frequencies around the filter cutoff point. The resonance can give the sound a more pronounced, "nasal" or "vocal" character and can be used creatively in sound design to add character or complexity to a sound. (Scale: 0 % / 100 %. Default: 0 %).

3.2.7 Section 7: Bode Frecuency Shifter (7)

The Bode frequency shifter is an analog circuit that produces a natural, warm sound that is popular with many sound designers and musicians. It is often used to create a range of effects, including metallic, bell-like sounds, and chorus-like textures. The Bode frequency shift (inharmonic shift in Hertz, not pitch) is applied individually to each voice.

- 1: Sine Shifter Mix: Determines the Dry / Wet mix. (Scale: 0 % / 100 %. Default: 0 %).
- **2:** Sine Shifter: Detemines the amount of linear scaling of shift, (Scale: 0% / 100 %. Default: 50 %).
- **3: Sine Shifter Mod Source**: Determines the source of the shifter modulation. Choose one source from the following option list:
 - Cons = Constant maximum value, which is also the default option.
 - Rnd = Random bipolar value between -1 and +1.
 - Rnd+ = Random unipolar value between 0 and 1.
 - PB = Pitch Bend, incoming MIDI pitch bend.
 - Aft = Aftertouch, incoming MIDI channel pressure.
 - MW = Modulation Wheel.
 - Key = Keyboard position relative to C3. Value increases by 1.0 per octave.
 - Vel = Velocity, incoming MIDI velocity.
 - Amp = Amp Envelope curve shaped by the Delay, Attack, Hold, Decay, Sustain and Release settings.

- Md1 = Mod 1 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 1 Envelope section on the back panel.
- Md2 = Mod 2 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 2 Envelope section on the back panel.
- Gli = Glide curve.
- NB = Note Bend envelope curve.
- **4: Sine Shifter Mod Amount**: Determines the amount of modulation (Scale: -100 / +100. Default: 0).
- 5: Sine Shifter Range: Determines the Frequency shift in Hertz. Low values result in barber's pole phasing when Mix is set to 50% (Scale: 0,05 Hz / 5 kHz. Default: 50 Hz).
- 6: Sine Shifter Feedback: Determines the feedback to add overtones or increase depth of phasing. (Scale: 0 % / 100 %. Default: 0 %).
- 7: Sine Shifter Mode: Shifts frequencies up, down, or left and right channels in opposite directions. (Scale: 0 % / 100 %. Default: 0 %).

3.2.8 Section 8: Send Sine To and Bend (8)

Send to
Delas
Ennd
- 2

The Send To determines the signal path of the oscillator. The Bend switch determines if the Bend modulation is applied to the oscillator.

• 1: Sine Send To: Determines the destination of the oscillator sound.

Send to Delay		
Ben		Output
Send to	~	Delay
Delay		Chorus
Ben		Reverb
Send to Delay		Osc ->

You have the following options:

- Output: The oscillators sound goes straight to the Output section, bypassing all the effects.
- Delay: The oscillators sound goes to the Delay effects section, which is the default option.
- o Chorus: The oscillators sound goes to the Chorus effects section.
- Reverb: The oscillators sound goes to the Linear Reverb effects section.
- Osc -> or Osc Out. On the back panel of the Dice Analog Synthersizer you can connect audio cables and route the oscillators output to an external device, such as a Line Mixer or an effect of your choice. Once connected, set the Send To to Osc Out to hear the result. Once set, the connected oscillator is subtracted from the main output internally.
- 2: Sine Bend: A switch to detemines if the Bend section is applied to the oscillator (Scale: On / Off. Default: Off).

3.3 Panel 2, Row 2: PWM Oscillator

The PWM (Pulse Width Modulation) oscillator row has 8 sections:

• Oscillator Type (1):

•

- PWM Width,
- Oscillator Tune (2): o Semi Tune,
 - Seria Tune,
 Fine Tune,
- Oscillator Volume (3).
- Oscillator Volume (0).
 Oscillator Panning (4).
- Oscillator Amplitude Envelope (5):
 - Attack,
 - Attack Curve.
 - o Hold,
 - o Decay,
 - Decay Curve.
 - o Sustain,
 - o Release,
 - Release Curve.
 - Oscillator Filterts (6):
 - Filter Mode, `
 - Filter Key to Cutoff.
 - Filter Cutoff.
 - Filter Cutoff Modulation Source.
 - Filter Cutoff Modulation Amount
 - Filter Resonance,

• Oscillator Bode Frequency Shifter (7):

- o Shifter Mix,
- o Shifter Shift.
- \circ Shifter Shift Modulation Source.
- o Shifter Shift Modulation Amount.
- o Shifter Range,
- Shifter Feedback.
- o Shifter Mode.
- Oscillator Output Send To (8):
 - Send To Output Mode,
 - Bend Switch.

3.3.1 Section 1: Oscillator Type (1)

Shows the type and name of the oscillator.

• **1: PWM Width**: Determines the Width (duty cycle) of the pulse wave. Square when set to 50% (Scale: 0 % / 100 %. Default: 50 %).

3.3.2 Section 2: Oscillator Tune (2)

- **1: Smi Pulse Tuning**: Determines the tuning or pitch of the oscillator in semitones (Scale: -36 / +36. Default: 0).
- **2:** Fin Pulse Fine Tuning. Provides precise pitch adjustment (Scale: -50 / +50 cents. Default: 0).

3.3.3 Section 3: Oscillator Volume (3)

• 1: Pulse Volume - Vol: Determines the oscillator volume (Scale: -∞ / 0,0 dB. Default: -∞ dB).

3.3.4 Section 4: Oscillator Panning (4)

1: Pulse Pan - Pan: Determines the panning of the output (Scale: -100 / 100. Default: 0).

3.3.5 Section 5: Oscillator Amplitude Envelope (5)

- **1: A Pulse Attack**: Determines the time that a sound takes to peak. When you press a key on your keyboard, the envelope is triggered. The attack parameter then controls how long it should take before the controlled parameter (pitch or filter) reaches the maximum value, when you press a key. By setting attack to a value of 0, the destination parameter would reach the maximum value instantly. By raising the Envelope Attack parameter, the value will instead slowly slide to its maximum (Scale: 0 seconds / 16 seconds. Default: 0 seconds). Values in seconds (s) shown in the tool tip are based on the Pulse Attack Curve set to 0 %.
- 2: H Pulse Hold: Determines how long the controlled parameter should stay at its maximum value before starting to decrease again. This can be used in combination with the Envelope Attack and Envelope Decay parameters to make a value reach its maximum level, stay there for a while (Envelope Hold) and then start dropping gradually down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 0 seconds).
- **3:** D Pulse Decay: Determines the time that the sound takes to fall from the peak to the Envelope Sustain level. After the maximum value for a destination has been reached and the Envelope Hold time has expired, the controlled parameter will start to gradually drop down to the Envelope Sustain level. How long it should take before it reaches the Envelope Sustain level is controlled with the Envelope Decay parameter. If the Envelope Decay is set to 0, the value will immediately drop down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 385 ms). Values in miliseconds (ms) shown in the tooltip are based on the Envelope Decay Curve set to 50 %.
- 4: S Pulse Sustain: Determines the volume (relative to the peak) when the key is held down. The Envelope Sustain parameter determines the value the Amp Envelope should drop back to after the Envelope Decay. If you set Envelope Sustain to full level however, the Envelope Decay setting doesn't matter since the value will never decrease. A combination of Envelope Decay and Envelope Sustain can be used for creating envelopes that rise up to the maximum value, then gradually decrease to, and stay on a level somewhere in-between zero and maximum (Scale: -∞ / 0 dB. Default: 0 dB).
- **5: R Pulse Release**: Determines the time the sound takes to die out after the key is released. This works just like the Envelope Decay parameter, with the exception that it determines the time it takes for the value to fall back to zero after the key is released (Scale: 0 seconds / 16 seconds. Default: 59,8 ms).
- 6: AC Pulse Attack Curve: Determines the curve for the Envelope Attack from a slow reach to the final value, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: 0 %). Typically 75 90% for logarithmic curves.

DICE Analog Synthesizer Operation Manual

- 7: DC Pulse Decay Curve: Determines the curve for the Envelope Decay from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.
- 8: RC Pulse Release Curve: Determines the curve for the Envelope Release from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.

3.3.6 Section 6: Filters (6)

These are standard synthesizer filter modules, so you should already be familiar with their function and characteristics. In version 1.0.1 the filters cuttoff and resonance are limited. In the updated version 1.1.2 the limiter on the filters is removed, making Dice Analog Synthesizer brighter and aggresive. A Filters Compatible Switch is placed on the back panel.

- 1: Pulse Filter Mode:: Determines the filter type. There are 6 filter types (Default: LP24).
 - LP6 1-pole Lowpass filter.
 - LP12 2-pole lowpass filter
 - LP24 4-pole lowpass filter
 - HP6 1-pole highpass filter
 - HP12 2-pole highpasas filter
 - BP6 2-pole bandpass filter
- **2: Pulse Key Filter Tracking**: the filter key tracking is a feature that allows the filter cutoff frequency to follow the pitch of the keyboard. This means that as you play higher or lower notes on the keyboard, the filter cutoff frequency changes proportionally to maintain the same relative harmonic content in the sound. Set the amount to 31 for full keyboard tracking. (Scale: 0 / 31. Default: 0).
- 3: Pulse Filter Cutoff: Detemines the frequency point above which the filter starts attenuating or reducing the amplitude of the sound's harmonic components. In other words, it controls the amount of frequency content that is allowed to pass through the filter. (Scale: 20 Hz / 25 kHz seconds. Default: 25 kHz).
- 4: Pulse Filter Cutoff Mod Source: Determines the source of the filter modulation. Choose one source from the following option list:
 - Cons = Constant maximum value, which is also the default option.
 - Rnd = Random bipolar value between -1 and +1.
 - Rnd+ = Random unipolar value between 0 and 1.
 - PB = Pitch Bend, incoming MIDI pitch bend.
 - Aft = Aftertouch, incoming MIDI channel pressure.
 - MW = Modulation Wheel.
 - Key = Keyboard position relative to C3. Value increases by 1.0 per octave.
 - Vel = Velocity, incoming MIDI velocity.
 - Amp = Amp Envelope curve shaped by the Delay, Attack, Hold, Decay, Sustain and Release settings.
 - LFO = LFO or Low Frequency Oscillator.
 - Md1 = Mod 1 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 1 Envelope section on the back panel.
 - Md2 = Mod 2 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 2 Envelope section on the back panel.
 - Gli = Glide curve.
 - NB = Note Bend envelope curve.
- **5: Pulse Filter Cutoff Mod Amount**: Determines the amount of modulation (Scale: -100 / +100. Default: 0).
- 6: Pulse Filter Reso: Determines the amount of emphasis or boost given to the frequencies around the filter cutoff point. The resonance can give the sound a more pronounced, "nasal" or

"vocal" character and can be used creatively in sound design to add character or complexity to a sound. (Scale: 0 % / 100 %. Default: 0 %).

3.3.7 Section 7: Bode Frecuency Shifter (7)

The Bode frequency shifter is an analog circuit that produces a natural, warm sound that is popular with many sound designers and musicians. It is often used to create a range of effects, including metallic, bell-like sounds, and chorus-like textures. The Bode frequency shift (inharmonic shift in Hertz, not pitch) is applied individually to each voice.

- 1: Pulse Shifter Mix: Determines the Dry / Wet mix. (Scale: 0 % / 100 %. Default: 0 %).
- **2:** Pulse Shifter: Detemines the amount of linear scaling of shift, (Scale: 0% / 100 %. Default: 50 %).
- **3: Pulse Shifter Mod Source**: Determines the source of the shifter modulation. Choose one source from the following option list:
 - Cons = Constant maximum value, which is also the default option.
 - Rnd = Random bipolar value between -1 and +1.
 - Rnd+ = Random unipolar value between 0 and 1.
 - PB = Pitch Bend, incoming MIDI pitch bend.
 - Aft = Aftertouch, incoming MIDI channel pressure.
 - MW = Modulation Wheel.
 - Key = Keyboard position relative to C3. Value increases by 1.0 per octave.
 - Vel = Velocity, incoming MIDI velocity.
 - Amp = Amp Envelope curve shaped by the Delay, Attack, Hold, Decay, Sustain and Release settings.
 - Md1 = Mod 1 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 1 Envelope section on the back panel.
 - Md2 = Mod 2 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 2 Envelope section on the back panel.
 - Gli = Glide curve.
 - NB = Note Bend envelope curve.
- **4:** Pulse Shifter Mod Amount: Determines the amount of modulation (Scale: -100 / +100. Default: 0).
- **5:** Pulse Shifter Range: Determines the Frequency shift in Hertz. Low values result in barber's pole phasing when Mix is set to 50% (Scale: 0,05 Hz / 5 kHz. Default: 50 Hz).
- 6: Pulse Shifter Feedback: Determines the feedback to add overtones or increase depth of phasing. (Scale: 0 % / 100 %. Default: 0 %).
- 7: Pulse Shifter Mode: Shifts frequencies up, down, or left and right channels in opposite directions. (Scale: 0 % / 100 %. Default: 0 %).

3.3.8 Section 8: Send Pulse To and Bend (8)

The Send To determines the signal path of the oscillator. The Bend switch determines if the Bend modulation is applied to the oscillator.

• **1: Pulse Send To**: Determines the destination of the oscillator sound.

DICE Analog Synthesizer Operation Manual

Send to Delay		
📕 Ben		Output
Sendto	~	Delay
Delay		Chorus
Ben		Reverb
Send to Delay		Osc ->

You have the following options:

- Output: The oscillators sound goes straight to the Output section, bypassing all the effects.
- Delay: The oscillators sound goes to the Delay effects section, which is the default option.
- \circ $\,$ Chorus: The oscillators sound goes to the Chorus effects section.
- Reverb: The oscillators sound goes to the Linear Reverb effects section.
 Osc -> or Osc Out. On the back panel of the Dice Analog Synthersizer you can connect audio cables and route the oscillators output to an external device, such as a Line Mixer or an effect of your choice. Once connected, set the Send To to Osc Out to hear the result. Once set, the connected oscillator is subtracted from the main output internally.
- **2: Pulse Bend**: A switch to detemines if the Bend section is applied to the oscillator (Scale: On / Off. Default: Off).

3.4 Panel 2, Row 3: Triangle Oscillator

The Triangle oscillator row has 8 sections:

- Oscillator Type (1):
- Oscillator Tune (2):
 - o Semi Tune,
 - \circ Fine Tune,
- Oscillator Volume (3).
- Oscillator Panning (4).
- Oscillator Amplitude Envelope (5):
 - o Attack,
 - o Attack Curve.
 - o Hold,
 - o Decay,
 - Decay Curve.
 - Sustain,
 - Release,
 - Release Curve.
- Oscillator Filterts (6):
 - Filter Mode,
 - Filter Key to Cutoff.
 - Filter Cutoff.
 - Filter Cutoff Modulation Source.
 - o Filter Cutoff Modulation Amount
 - Filter Resonance,
- Oscillator Bode Frequency Shifter (7):
 - o Shifter Mix,
 - o Shifter Shift.
 - o Shifter Shift Modulation Source.

- Shifter Shift Modulation Amount.
- Shifter Range,
- Shifter Feedback.
- o Shifter Mode.
- Oscillator Output Send To (8):
 - $\circ \quad \text{Send To Output Mode,} \\$
 - Bend Switch.

3.4.1 Section 1: Oscillator Type (1)

Shows the type and name of the oscillator.

3.4.2 Section 2: Oscillator Tune (2)

- **1: Smi Triangle Tuning**: Determines the tuning or pitch of the oscillator in semitones (Scale: -36 / +36. Default: 0).
- **2: Fin Triangle Fine Tuning**. Provides precise pitch adjustment (Scale: -50 / +50 cents. Default: 0).

3.4.3 Section 3: Oscillator Volume (3)


1: Triangle Volume - Vol: Determines the oscillator volume (Scale: -∞ / 0,0 dB. Default: -∞ dB).

3.4.4 Section 4: Oscillator Panning (4)

• 1: Triangle Pan - Pan: Determines the panning of the output (Scale: -100 / 100. Default: 0).

3.4.5 Section 5: Oscillator Amplitude Envelope (5)

• 1: A - Triangle Attack: Determines the time that a sound takes to peak. When you press a key on your keyboard, the envelope is triggered. The attack parameter then controls how long it should take before the controlled parameter (pitch or filter) reaches the maximum value, when you press a key. By setting attack to a value of 0, the destination parameter would reach the maximum value instantly. By raising the Envelope Attack parameter, the value will instead slowly slide to its maximum (Scale: 0 seconds / 16 seconds. Default: 0 seconds). Values in seconds (s) shown in the tool tip are based on the Triangle Attack Curve set to 0 %.

DICE Analog Synthesizer Operation Manual

- 2: H Triangle Hold: Determines how long the controlled parameter should stay at its maximum value before starting to decrease again. This can be used in combination with the Envelope Attack and Envelope Decay parameters to make a value reach its maximum level, stay there for a while (Envelope Hold) and then start dropping gradually down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 0 seconds).
- **3:** D Triangle Decay: Determines the time that the sound takes to fall from the peak to the Envelope Sustain level. After the maximum value for a destination has been reached and the Envelope Hold time has expired, the controlled parameter will start to gradually drop down to the Envelope Sustain level. How long it should take before it reaches the Envelope Sustain level is controlled with the Envelope Decay parameter. If the Envelope Decay is set to 0, the value will immediately drop down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 385 ms). Values in miliseconds (ms) shown in the tooltip are based on the Envelope Decay Curve set to 50 %.
- 4: S Triangle Sustain: Determines the volume (relative to the peak) when the key is held down. The Envelope Sustain parameter determines the value the Amp Envelope should drop back to after the Envelope Decay. If you set Envelope Sustain to full level however, the Envelope Decay setting doesn't matter since the value will never decrease. A combination of Envelope Decay and Envelope Sustain can be used for creating envelopes that rise up to the maximum value, then gradually decrease to, and stay on a level somewhere in-between zero and maximum (Scale: -∞ / 0 dB. Default: 0 dB).
- **5: R Triangle Release**: Determines the time the sound takes to die out after the key is released. This works just like the Envelope Decay parameter, with the exception that it determines the time it takes for the value to fall back to zero after the key is released (Scale: 0 seconds / 16 seconds. Default: 59,8 ms).
- 6: AC Triangle Attack Curve: Determines the curve for the Envelope Attack from a slow reach to the final value, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: 0 %). Typically 75 90% for logarithmic curves.
- 7: DC Triangle Decay Curve: Determines the curve for the Envelope Decay from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.
- 8: RC Triangle Release Curve: Determines the curve for the Envelope Release from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.

3.4.6 Section 6: Filters (6)

These are standard synthesizer filter modules, so you should already be familiar with their function and characteristics. In version 1.0.1 the filters cuttoff and resonance are limited. In the updated version 1.1.2 the limiter on the filters is removed, making Dice Analog Synthesizer brighter and aggresive. A Filters Compatible Switch is placed on the back panel.

- 1: Triangle Filter Mode:: Determines the filter type. There are 6 filter types (Default: LP24).
 - LP6 1-pole Lowpass filter.
 - LP12 2-pole lowpass filter
 - o LP24 4-pole lowpass filter
 - HP6 1-pole highpass filter
 - HP12 2-pole highpasas filter
 - BP6 2-pole bandpass filter
- **2: Triangle Key Filter Tracking**: the filter key tracking is a feature that allows the filter cutoff frequency to follow the pitch of the keyboard. This means that as you play higher or lower notes on the keyboard, the filter cutoff frequency changes proportionally to maintain the same relative harmonic content in the sound. Set the amount to 31 for full keyboard tracking. (Scale: 0 / 31. Default: 0).

- **3: Triangle Filter Cutoff**: Detemines the frequency point above which the filter starts attenuating or reducing the amplitude of the sound's harmonic components. In other words, it controls the amount of frequency content that is allowed to pass through the filter. (Scale: 20 Hz / 25 kHz seconds. Default: 25 kHz).
- 4: Triangle Filter Cutoff Mod Source: Determines the source of the filter modulation. Choose one source from the following option list:
 - Cons = Constant maximum value, which is also the default option.
 - Rnd = Random bipolar value between -1 and +1.
 - Rnd+ = Random unipolar value between 0 and 1.
 - PB = Pitch Bend, incoming MIDI pitch bend.
 - Aft = Aftertouch, incoming MIDI channel pressure.
 - MW = Modulation Wheel.
 - Key = Keyboard position relative to C3. Value increases by 1.0 per octave.
 - Vel = Velocity, incoming MIDI velocity.
 - Amp = Amp Envelope curve shaped by the Delay, Attack, Hold, Decay, Sustain and Release settings.
 - LFO = LFO or Low Frequency Oscillator.
 - Md1 = Mod 1 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 1 Envelope section on the back panel.
 - Md2 = Mod 2 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 2 Envelope section on the back panel.
 - Gli = Glide curve.
 - NB = Note Bend envelope curve.
- 5: Triangle Filter Cutoff Mod Amount: Determines the amount of modulation (Scale: -100 / +100. Default: 0).
- 6: Triangle Filter Reso: Determines the amount of emphasis or boost given to the frequencies around the filter cutoff point. The resonance can give the sound a more pronounced, "nasal" or "vocal" character and can be used creatively in sound design to add character or complexity to a sound. (Scale: 0 % / 100 %. Default: 0 %).

3.4.7 Section 7: Bode Frecuency Shifter (7)

The Bode frequency shifter is an analog circuit that produces a natural, warm sound that is popular with many sound designers and musicians. It is often used to create a range of effects, including metallic, bell-like sounds, and chorus-like textures. The Bode frequency shift (inharmonic shift in Hertz, not pitch) is applied individually to each voice.

- 1: Triangle Shifter Mix: Determines the Dry / Wet mix. (Scale: 0 % / 100 %. Default: 0 %).
- 2: Triangle Shifter: Detemines the amount of linear scaling of shift, (Scale: 0% / 100 %. Default: 50 %).
- **3: Triangle Shifter Mod Source**: Determines the source of the shifter modulation. Choose one source from the following option list:
 - Cons = Constant maximum value, which is also the default option.
 - Rnd = Random bipolar value between -1 and +1.
 - Rnd+ = Random unipolar value between 0 and 1.
 - PB = Pitch Bend, incoming MIDI pitch bend.
 - Aft = Aftertouch, incoming MIDI channel pressure.
 - MW = Modulation Wheel.
 - Key = Keyboard position relative to C3. Value increases by 1.0 per octave.
 - Vel = Velocity, incoming MIDI velocity.
 - Amp = Amp Envelope curve shaped by the Delay, Attack, Hold, Decay, Sustain and Release settings.
 - Md1 = Mod 1 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 1 Envelope section on the back panel.

- Md2 = Mod 2 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 2 Envelope section on the back panel.
- Gli = Glide curve.
- NB = Note Bend envelope curve.
- **4: Triangle Shifter Mod Amount**: Determines the amount of modulation (Scale: -100 / +100. Default: 0).
- **5: Triangle Shifter Range**: Determines the Frequency shift in Hertz. Low values result in barber's pole phasing when Mix is set to 50% (Scale: 0,05 Hz / 5 kHz. Default: 50 Hz).
- 6: Triangle Shifter Feedback: Determines the feedback to add overtones or increase depth of phasing. (Scale: 0 % / 100 %. Default: 0 %).
- 7: Triangle Shifter Mode: Shifts frequencies up, down, or left and right channels in opposite directions. (Scale: 0 % / 100 %. Default: 0 %).

3.4.8 Section 8: Send Triangle To and Bend (8)

Send to
Delas
E Band
- 2

The Send To determines the signal path of the oscillator. The Bend switch determines if the Bend modulation is applied to the oscillator.

• 1: Triangle Send To: Determines the destination of the oscillator sound.

Sendto							
Delay Bend		Output					
Send to	~	Delay					
Delay		Chorus					
Bend		Reverb					
Send to Delay		Osc ->					

You have the following options:

- Output: The oscillators sound goes straight to the Output section, bypassing all the effects.
- Delay: The oscillators sound goes to the Delay effects section, which is the default option.
- Chorus: The oscillators sound goes to the Chorus effects section.
- Reverb: The oscillators sound goes to the Linear Reverb effects section.
- Osc -> or Osc Out. On the back panel of the Dice Analog Synthersizer you can connect audio cables and route the oscillators output to an external device, such as a Line Mixer or an effect of your choice. Once connected, set the Send To to Osc Out to hear the result. Once set, the connected oscillator is subtracted from the main output internally.
- **2: Triangle Bend**: A switch to detemines if the Bend section is applied to the oscillator (Scale: On / Off. Default: Off).

3.5 Panel 2, Row 4: Sub Oscillator

The Sub oscillator row has 8 sections:

- Oscillator Type (1):
- Oscillator Tune (2): o Semi Tune,

- o Fine Tune,
- Oscillator Volume (3).
- Oscillator Panning (4).
- Oscillator Amplitude Envelope (5):
 - o Attack,
 - o Attack Curve.
 - o Hold,
 - o Decay,
 - o Decay Curve.
 - o Sustain,
 - \circ Release,
 - o Release Curve.
- Oscillator Filterts (6):
 - o Filter Mode,
 - Filter Key to Cutoff.
 - Filter Cutoff.
 - Filter Cutoff Modulation Source.
 - Filter Cutoff Modulation Amount
 - o Filter Resonance,
- Oscillator Bode Frequency Shifter (7):
 - Shifter Mix,
 - o Shifter Shift.
 - Shifter Shift Modulation Source.
 - Shifter Shift Modulation Amount.
 - Shifter Range,
 - Shifter Feedback.
 - o Shifter Mode.
- Oscillator Output Send To (8):
 - Send To Output Mode,
 - Bend Switch.

3.5.1 Section 1: Oscillator Type (1)

Shows the type and name of the oscillator.

Sub

3.5.2 Section 2: Oscillator Tune (2)

- 1: Smi Sub Tuning: Determines the tuning or pitch of the oscillator in semitones (Scale: -36 / +36. Default: 0).
- **2:** Fin Sub Fine Tuning. Provides precise pitch adjustment (Scale: -50 / +50 cents. Default: 0).

3.5.3 Section 3: Oscillator Volume (3)

• 1: Sub Volume - Vol: Determines the oscillator volume (Scale: -∞ / 0,0 dB. Default: -∞ dB).

3.5.4 Section 4: Oscillator Panning (4)

• 1: Sub Pan - Pan: Determines the panning of the output (Scale: -100 / 100. Default: 0).

3.5.5 Section 5: Oscillator Amplitude Envelope (5)

- 1: A Sub Attack: Determines the time that a sound takes to peak. When you press a key on your keyboard, the envelope is triggered. The attack parameter then controls how long it should take before the controlled parameter (pitch or filter) reaches the maximum value, when you press a key. By setting attack to a value of 0, the destination parameter would reach the maximum value instantly. By raising the Envelope Attack parameter, the value will instead slowly slide to its maximum (Scale: 0 seconds / 16 seconds. Default: 0 seconds). Values in seconds (s) shown in the tool tip are based on the Sub Attack Curve set to 0 %.
- **2:** H Sub Hold: Determines how long the controlled parameter should stay at its maximum value before starting to decrease again. This can be used in combination with the Envelope Attack and Envelope Decay parameters to make a value reach its maximum level, stay there for a while (Envelope Hold) and then start dropping gradually down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 0 seconds).
- **3: D Sub Decay**: Determines the time that the sound takes to fall from the peak to the Envelope Sustain level. After the maximum value for a destination has been reached and the Envelope Hold time has expired, the controlled parameter will start to gradually drop down to the Envelope Sustain level. How long it should take before it reaches the Envelope Sustain level is controlled with the Envelope Decay parameter. If the Envelope Decay is set to 0, the value will immediately drop down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 385 ms). Values in miliseconds (ms) shown in the tooltip are based on the Envelope Decay Curve set to 50 %.
- 4: S Sub Sustain: Determines the volume (relative to the peak) when the key is held down. The Envelope Sustain parameter determines the value the Amp Envelope should drop back to after the Envelope Decay. If you set Envelope Sustain to full level however, the Envelope Decay setting doesn't matter since the value will never decrease. A combination of Envelope Decay and Envelope Sustain can be used for creating envelopes that rise up to the maximum value, then gradually decrease to, and stay on a level somewhere in-between zero and maximum (Scale: -∞ / 0 dB. Default: 0 dB).
- **5: R Sub Release**: Determines the time the sound takes to die out after the key is released. This works just like the Envelope Decay parameter, with the exception that it determines the time it takes for the value to fall back to zero after the key is released (Scale: 0 seconds / 16 seconds. Default: 59,8 ms).
- 6: AC Sub Attack Curve: Determines the curve for the Envelope Attack from a slow reach to the final value, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: 0 %). Typically 75 90% for logarithmic curves.
- 7: DC Sub Decay Curve: Determines the curve for the Envelope Decay from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.
- 8: RC Sub Release Curve: Determines the curve for the Envelope Release from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.

3.5.6 Section 6: Filters (6)

These are standard synthesizer filter modules, so you should already be familiar with their function and characteristics. In version 1.0.1 the filters cuttoff and resonance are limited. In the updated version 1.1.2 the limiter on the filters is removed, making Dice Analog Synthesizer brighter and aggresive. A Filters Compatible Switch is placed on the back panel.

- 1: Sub Filter Mode:: Determines the filter type. There are 6 filter types (Default: LP24).
 - LP6 1-pole Lowpass filter.
 - LP12 2-pole lowpass filter
 - o LP24 4-pole lowpass filter
 - HP6 1-pole highpass filter
 - o HP12 2-pole highpasas filter
 - BP6 2-pole bandpass filter
- 2: Sub Key Filter Tracking: the filter key tracking is a feature that allows the filter cutoff frequency to follow the pitch of the keyboard. This means that as you play higher or lower notes on the keyboard, the filter cutoff frequency changes proportionally to maintain the same relative harmonic content in the sound. Set the amount to 31 for full keyboard tracking. (Scale: 0 / 31. Default: 0).
- 3: Sub Filter Cutoff: Detemines the frequency point above which the filter starts attenuating or reducing the amplitude of the sound's harmonic components. In other words, it controls the amount of frequency content that is allowed to pass through the filter. (Scale: 20 Hz / 25 kHz seconds. Default: 25 kHz).
- **4:** Sub Filter Cutoff Mod Source: Determines the source of the filter modulation. Choose one source from the following option list:
 - Cons = Constant maximum value, which is also the default option.
 - Rnd = Random bipolar value between -1 and +1.
 - Rnd+ = Random unipolar value between 0 and 1.
 - PB = Pitch Bend, incoming MIDI pitch bend.
 - Aft = Aftertouch, incoming MIDI channel pressure.
 - MW = Modulation Wheel.
 - Key = Keyboard position relative to C3. Value increases by 1.0 per octave.
 - Vel = Velocity, incoming MIDI velocity.
 - Amp = Amp Envelope curve shaped by the Delay, Attack, Hold, Decay, Sustain and Release settings.
 - LFO = LFO or Low Frequency Oscillator.
 - Md1 = Mod 1 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 1 Envelope section on the back panel.
 - Md2 = Mod 2 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 2 Envelope section on the back panel.
 - Gli = Glide curve.
 - NB = Note Bend envelope curve.
- **5:** Sub Filter Cutoff Mod Amount: Determines the amount of modulation (Scale: -100 / +100. Default: 0).
- 6: Sub Filter Reso: Determines the amount of emphasis or boost given to the frequencies around the filter cutoff point. The resonance can give the sound a more pronounced, "nasal" or "vocal" character and can be used creatively in sound design to add character or complexity to a sound. (Scale: 0 % / 100 %. Default: 0 %).

3.5.7 Section 7: Bode Frecuency Shifter (7)

DICE Analog Synthesizer Operation Manual

The Bode frequency shifter is an analog circuit that produces a natural, warm sound that is popular with many sound designers and musicians. It is often used to create a range of effects, including metallic, bell-like sounds, and chorus-like textures. The Bode frequency shift (inharmonic shift in Hertz, not pitch) is applied individually to each voice.

- 1: Sub Shifter Mix: Determines the Dry / Wet mix. (Scale: 0 % / 100 %. Default: 0 %).
- 2: Sub Shifter: Detemines the amount of linear scaling of shift, (Scale: 0% / 100 %. Default: 50 %).
- **3:** Sub Shifter Mod Source: Determines the source of the shifter modulation. Choose one source from the following option list:
 - Cons = Constant maximum value, which is also the default option.
 - Rnd = Random bipolar value between -1 and +1.
 - Rnd+ = Random unipolar value between 0 and 1.
 - PB = Pitch Bend, incoming MIDI pitch bend.
 - Aft = Aftertouch, incoming MIDI channel pressure.
 - MW = Modulation Wheel.
 - Key = Keyboard position relative to C3. Value increases by 1.0 per octave.
 - Vel = Velocity, incoming MIDI velocity.
 - Amp = Amp Envelope curve shaped by the Delay, Attack, Hold, Decay, Sustain and Release settings.
 - Md1 = Mod 1 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 1 Envelope section on the back panel.
 - Md2 = Mod 2 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 2 Envelope section on the back panel.
 - Gli = Glide curve.
 - NB = Note Bend envelope curve.
- **4:** Sub Shifter Mod Amount: Determines the amount of modulation (Scale: -100 / +100. Default: 0).
- **5:** Sub Shifter Range: Determines the Frequency shift in Hertz. Low values result in barber's pole phasing when Mix is set to 50% (Scale: 0,05 Hz / 5 kHz. Default: 50 Hz).
- 6: Sub Shifter Feedback: Determines the feedback to add overtones or increase depth of phasing. (Scale: 0 % / 100 %. Default: 0 %).
- 7: Sub Shifter Mode: Shifts frequencies up, down, or left and right channels in opposite directions. (Scale: 0 % / 100 %. Default: 0 %).

3.5.8 Section 8: Send Sub To and Bend (8)

The Send To determines the signal path of the oscillator. The Bend switch determines if the Bend modulation is applied to the oscillator.

• 1: Sub Send To: Determines the destination of the oscillator sound.

Send to	
Ben	Output
Send to 🖌 Delay	Delay
	Chorus
	Reverb
Send to Delay	Osc ->

You have the following options:

• Output: The oscillators sound goes straight to the Output section, bypassing all the effects.

- Delay: The oscillators sound goes to the Delay effects section, which is the default 0 option.
- Chorus: The oscillators sound goes to the Chorus effects section. 0
- Reverb: The oscillators sound goes to the Linear Reverb effects section. 0
- Osc -> or Osc Out. On the back panel of the Dice Analog Synthersizer you can 0 connect audio cables and route the oscillators output to an external device, such as a Line Mixer or an effect of your choice. Once connected, set the Send To to Osc Out to hear the result. Once set, the connected oscillator is subtracted from the main output internally.
- 2: Sub Bend: A switch to detemines if the Bend section is applied to the oscillator (Scale: On / Off. Default: Off).

3.6 Panel 2, Row 5: Noise Oscillator

The Noise oscillator row has 7 sections:

- Oscillator Type (1):
 - There are 4 noise oscillator types:
 - White Noise. \circ
 - Pink Noise. 0
 - Brown Noise. 0
 - Static Noise. 0
- Oscillator Tune (2):
 - Semi Tune,
 - 0 Fine Tune,
- **Oscillator Volume (3)**.
- **Oscillator Panning (4).**
- **Oscillator Amplitude Envelope (5):**
 - Attack, 0
 - Attack Curve. 0
 - Hold, 0
 - Decay, 0
 - Decay Curve. 0
 - Sustain, 0
 - Release, 0
 - Release Curve. 0
- **Oscillator Filterts (6)**:
 - Filter Mode, 0
 - Filter Key to Cutoff. 0
 - Filter Cutoff. 0
 - Filter Cutoff Modulation Source. 0
 - Filter Cutoff Modulation Amount 0
 - Filter Resonance, 0
- **Oscillator Bode Frequency Shifter (7):**
 - Shifter Mix, 0
 - Shifter Shift. 0
 - Shifter Shift Modulation Source. 0
 - Shifter Shift Modulation Amount. 0
 - Shifter Range. 0
 - Shifter Feedback. 0
 - Shifter Mode. 0
- Oscillator Output Send To (8):
 - Send To Output Mode, 0 Bend Switch.

0

3.6.1 Section 1: Oscillator Type (1)

Shows the type and name of the oscillator.

• **1: Noise Type**: Determines the type of noise oscillator (Scale: White Noise, Pink Noise, Brown Noise and Static Noise.. Default: Brown Noise).

Brown	
Brown Nois	White
	Pink
Sav Amt	Brown
1	Stat

There are 4 different noise oscillator types:

- White Noise.
- Pink Noise.
- o Brown Noise.
- Static Noise.

3.6.2 Section 2: Oscillator Volume (3)

• 1: Noise Volume - Vol: Determines the oscillator volume (Scale: -∞ / 0,0 dB. Default: -∞ dB).

3.6.3 Section 3: Oscillator Panning (4)

• 1: Noise Pan - Pan: Determines the panning of the output (Scale: -100 / 100. Default: 0).

3.6.4 Section 4: Oscillator Amplitude Envelope (5)

- **1: A Noise Attack**: Determines the time that a sound takes to peak. When you press a key on your keyboard, the envelope is triggered. The attack parameter then controls how long it should take before the controlled parameter (pitch or filter) reaches the maximum value, when you press a key. By setting attack to a value of 0, the destination parameter would reach the maximum value instantly. By raising the Envelope Attack parameter, the value will instead slowly slide to its maximum (Scale: 0 seconds / 16 seconds. Default: 0 seconds). Values in seconds (s) shown in the tool tip are based on the Noise Attack Curve set to 0 %.
- 2: H Noise Hold: Determines how long the controlled parameter should stay at its maximum value before starting to decrease again. This can be used in combination with the Envelope Attack and Envelope Decay parameters to make a value reach its maximum level, stay there

DICE Analog Synthesizer Operation Manual

for a while (Envelope Hold) and then start dropping gradually down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 0 seconds).

- **3: D Noise Decay**: Determines the time that the sound takes to fall from the peak to the Envelope Sustain level. After the maximum value for a destination has been reached and the Envelope Hold time has expired, the controlled parameter will start to gradually drop down to the Envelope Sustain level. How long it should take before it reaches the Envelope Sustain level is controlled with the Envelope Decay parameter. If the Envelope Decay is set to 0, the value will immediately drop down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 385 ms). Values in miliseconds (ms) shown in the tooltip are based on the Envelope Decay Curve set to 50 %.
- 4: S Noise Sustain: Determines the volume (relative to the peak) when the key is held down. The Envelope Sustain parameter determines the value the Amp Envelope should drop back to after the Envelope Decay. If you set Envelope Sustain to full level however, the Envelope Decay setting doesn't matter since the value will never decrease. A combination of Envelope Decay and Envelope Sustain can be used for creating envelopes that rise up to the maximum value, then gradually decrease to, and stay on a level somewhere in-between zero and maximum (Scale: -∞ / 0 dB. Default: 0 dB).
- 5: R Noise Release: Determines the time the sound takes to die out after the key is released. This works just like the Envelope Decay parameter, with the exception that it determines the time it takes for the value to fall back to zero after the key is released (Scale: 0 seconds / 16 seconds. Default: 59,8 ms).
- 6: AC Noise Attack Curve: Determines the curve for the Envelope Attack from a slow reach to the final value, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: 0 %). Typically 75 90% for logarithmic curves.
- 7: DC Noise Decay Curve: Determines the curve for the Envelope Decay from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.
- 8: RC Noise Release Curve: Determines the curve for the Envelope Release from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.

3.6.5 Section 5: Filters (6)

These are standard synthesizer filter modules, so you should already be familiar with their function and characteristics. In version 1.0.1 the filters cuttoff and resonance are limited. In the updated version 1.1.2 the limiter on the filters is removed, making Dice Analog Synthesizer brighter and aggresive. A Filters Compatible Switch is placed on the back panel.

- 1: Noise Filter Mode:: Determines the filter type. There are 6 filter types (Default: LP24).
 - LP6 1-pole Lowpass filter.
 - o LP12 2-pole lowpass filter
 - LP24 4-pole lowpass filter
 - HP6 1-pole highpass filter
 - o HP12 2-pole highpasas filter
 - BP6 2-pole bandpass filter
- **2: Noise Key Filter Tracking**: the filter key tracking is a feature that allows the filter cutoff frequency to follow the pitch of the keyboard. This means that as you play higher or lower notes on the keyboard, the filter cutoff frequency changes proportionally to maintain the same relative harmonic content in the sound. Set the amount to 31 for full keyboard tracking. (Scale: 0 / 31. Default: 0).
- 3: Noise Filter Cutoff: Detemines the frequency point above which the filter starts attenuating or reducing the amplitude of the sound's harmonic components. In other words, it controls the amount of frequency content that is allowed to pass through the filter. (Scale: 20 Hz / 25 kHz seconds. Default: 25 kHz).

- 4: Noise Filter Cutoff Mod Source: Determines the source of the filter modulation. Choose one source from the following option list:
 - Cons = Constant maximum value, which is also the default option.
 - Rnd = Random bipolar value between -1 and +1.
 - Rnd+ = Random unipolar value between 0 and 1.
 - PB = Pitch Bend, incoming MIDI pitch bend.
 - Aft = Aftertouch, incoming MIDI channel pressure.
 - MW = Modulation Wheel.
 - Key = Keyboard position relative to C3. Value increases by 1.0 per octave.
 - Vel = Velocity, incoming MIDI velocity.
 - Amp = Amp Envelope curve shaped by the Delay, Attack, Hold, Decay, Sustain and Release settings.
 - LFO = LFO or Low Frequency Oscillator.
 - Md1 = Mod 1 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 1 Envelope section on the back panel.
 - Md2 = Mod 2 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 2 Envelope section on the back panel.
 - Gli = Glide curve.
 - NB = Note Bend envelope curve.
- 5: Noise Filter Cutoff Mod Amount: Determines the amount of modulation (Scale: -100 / +100. Default: 0).
- 6: Noise Filter Reso: Determines the amount of emphasis or boost given to the frequencies around the filter cutoff point. The resonance can give the sound a more pronounced, "nasal" or "vocal" character and can be used creatively in sound design to add character or complexity to a sound. (Scale: 0 % / 100 %. Default: 0 %).

3.6.6 Section 6: Bode Frecuency Shifter (7)

The Bode frequency shifter is an analog circuit that produces a natural, warm sound that is popular with many sound designers and musicians. It is often used to create a range of effects, including metallic, bell-like sounds, and chorus-like textures. The Bode frequency shift (inharmonic shift in Hertz, not pitch) is applied individually to each voice.

- 1: Noise Shifter Mix: Determines the Dry / Wet mix. (Scale: 0 % / 100 %. Default: 0 %).
- **2: Noise Shifter**: Detemines the amount of linear scaling of shift, (Scale: 0% / 100 %. Default: 50 %).
- **3: Noise Shifter Mod Source**: Determines the source of the shifter modulation. Choose one source from the following option list:
 - Cons = Constant maximum value, which is also the default option.
 - Rnd = Random bipolar value between -1 and +1.
 - Rnd+ = Random unipolar value between 0 and 1.
 - PB = Pitch Bend, incoming MIDI pitch bend.
 - Aft = Aftertouch, incoming MIDI channel pressure.
 - MW = Modulation Wheel.
 - Key = Keyboard position relative to C3. Value increases by 1.0 per octave.
 - Vel = Velocity, incoming MIDI velocity.
 - Amp = Amp Envelope curve shaped by the Delay, Attack, Hold, Decay, Sustain and Release settings.
 - Md1 = Mod 1 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 1 Envelope section on the back panel.
 - Md2 = Mod 2 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 2 Envelope section on the back panel.
 - Gli = Glide curve.
 - NB = Note Bend envelope curve.

- **4: Noise Shifter Mod Amount**: Determines the amount of modulation (Scale: -100 / +100. Default: 0).
- **5: Noise Shifter Range**: Determines the Frequency shift in Hertz. Low values result in barber's pole phasing when Mix is set to 50% (Scale: 0,05 Hz / 5 kHz. Default: 50 Hz).
- 6: Noise Shifter Feedback: Determines the feedback to add overtones or increase depth of phasing. (Scale: 0 % / 100 %. Default: 0 %).
- 7: Noise Shifter Mode: Shifts frequencies up, down, or left and right channels in opposite directions. (Scale: 0 % / 100 %. Default: 0 %).

3.6.7 Section 7: Send Noise To and Bend (8)

The Send To determines the signal path of the oscillator. Notice that the noise oscillator has no Bend switch.

• 1: Noise Send To: Determines the destination of the oscillator sound.

Send to Delay	
ocras	Output
Send to	/ Delay
Delay	Chorus
Bend	Reverb
Mode Auto	Osc ->

You have the following options:

- Output: The oscillators sound goes straight to the Output section, bypassing all the effects.
- Delay: The oscillators sound goes to the Delay effects section, which is the default option.
- \circ $\,$ Chorus: The oscillators sound goes to the Chorus effects section.
- Reverb: The oscillators sound goes to the Linear Reverb effects section.
- Osc -> or Osc Out. On the back panel of the Dice Analog Synthersizer you can connect audio cables and route the oscillators output to an external device, such as a Line Mixer or an effect of your choice. Once connected, set the Send To to Osc Out to hear the result. Once set, the connected oscillator is subtracted from the main output internally.

3.7 Panel 2, Row 6: Super Saw Oscillator

The Saw oscillator row has 8 sections:

- Oscillator Type (1):
- Super Saw Amount,
 - Oscillator Tune (2):
 - o Semi Tune,
 - Fine Tune,
- Oscillator Volume (3).
- Oscillator Panning (4).
- Oscillator Amplitude Envelope (5):
 - o Attack,
 - o Attack Curve.

- $\circ \quad \text{Hold,} \quad$
- o Decay,
- $\circ \quad \text{Decay Curve.}$
- o Sustain,
- o Release,
- Release Curve.
- Oscillator Filterts (6):
 - o Filter Mode,
 - o Filter Key to Cutoff.
 - Filter Cutoff.
 - Filter Cutoff Modulation Source.
 - o Filter Cutoff Modulation Amount
 - o Filter Resonance,

• Oscillator Bode Frequency Shifter (7):

- o Shifter Mix,
- o Shifter Shift.
- o Shifter Shift Modulation Source.
- o Shifter Shift Modulation Amount.
- Shifter Range,
- Shifter Feedback.
- o Shifter Mode.
- Oscillator Output Send To (8):
 - Send To Output Mode,
 - o Bend Switch.

3.7.1 Section 1: Oscillator Type (1)

Shows the type and name of the oscillator.

• **1:** Amt – Super Saw Amount: Determines the amount of saw waveforms (Scale: 1 / 7. Default: 1).

3.7.2 Section 2: Oscillator Tune (2)

- **1: Smi Super Saw Tuning**: Determines the tuning or pitch of the oscillator in semitones (Scale: -36 / +36. Default: 0).
- **2: Fin Super Saw Fine Tuning**. Provides precise pitch adjustment (Scale: -50 / +50 cents. Default: 0).

3.7.3 Section 3: Oscillator Volume (3)

1: Super Saw Volume - Vol: Determines the oscillator volume (Scale: -∞ / 0,0 dB. Default: -∞ dB).

3.7.4 Section 4: Oscillator Panning (4)

1: Super Saw Pan - Pan: Determines the panning of the output (Scale: -100 / 100. Default: 0).

3.7.5 Section 5: Oscillator Amplitude Envelope (5)

- **1: A Super Saw Attack**: Determines the time that a sound takes to peak. When you press a key on your keyboard, the envelope is triggered. The attack parameter then controls how long it should take before the controlled parameter (pitch or filter) reaches the maximum value, when you press a key. By setting attack to a value of 0, the destination parameter would reach the maximum value instantly. By raising the Envelope Attack parameter, the value will instead slowly slide to its maximum (Scale: 0 seconds / 16 seconds. Default: 0 seconds). Values in seconds (s) shown in the tool tip are based on the Super Saw Attack Curve set to 0 %.
- 2: H Super Saw Hold: Determines how long the controlled parameter should stay at its maximum value before starting to decrease again. This can be used in combination with the Envelope Attack and Envelope Decay parameters to make a value reach its maximum level, stay there for a while (Envelope Hold) and then start dropping gradually down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 0 seconds).
- **3:** D Super Saw Decay: Determines the time that the sound takes to fall from the peak to the Envelope Sustain level. After the maximum value for a destination has been reached and the Envelope Hold time has expired, the controlled parameter will start to gradually drop down to the Envelope Sustain level. How long it should take before it reaches the Envelope Sustain level is controlled with the Envelope Decay parameter. If the Envelope Decay is set to 0, the value will immediately drop down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 385 ms). Values in miliseconds (ms) shown in the tooltip are based on the Envelope Decay Curve set to 50 %.
- 4: S Super Saw Sustain: Determines the volume (relative to the peak) when the key is held down. The Envelope Sustain parameter determines the value the Amp Envelope should drop back to after the Envelope Decay. If you set Envelope Sustain to full level however, the Envelope Decay setting doesn't matter since the value will never decrease. A combination of Envelope Decay and Envelope Sustain can be used for creating envelopes that rise up to the maximum value, then gradually decrease to, and stay on a level somewhere in-between zero and maximum (Scale: -∞ / 0 dB. Default: 0 dB).
- 5: R Super Saw Release: Determines the time the sound takes to die out after the key is released. This works just like the Envelope Decay parameter, with the exception that it determines the time it takes for the value to fall back to zero after the key is released (Scale: 0 seconds / 16 seconds. Default: 59,8 ms).
- 6: AC Super Saw Attack Curve: Determines the curve for the Envelope Attack from a slow reach to the final value, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: 0 %). Typically 75 90% for logarithmic curves.
- 7: DC Super Saw Decay Curve: Determines the curve for the Envelope Decay from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.
- 8: RC Super Saw Release Curve: Determines the curve for the Envelope Release from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.

3.7.6 Section 6: Filters (6)

These are standard synthesizer filter modules, so you should already be familiar with their function and characteristics. In version 1.0.1 the filters cuttoff and resonance are limited. In the updated version 1.1.2 the limiter on the filters is removed, making Dice Analog Synthesizer brighter and aggresive. A Filters Compatible Switch is placed on the back panel.

- 1: Super Saw Filter Mode:: Determines the filter type. There are 6 filter types (Default: LP24).
 - LP6 1-pole Lowpass filter.
 - LP12 2-pole lowpass filter
 - LP24 4-pole lowpass filter
 - HP6 1-pole highpass filter
 - HP12 2-pole highpasas filter
 - o BP6 2-pole bandpass filter
- 2: Super Saw Key Filter Tracking: the filter key tracking is a feature that allows the filter cutoff frequency to follow the pitch of the keyboard. This means that as you play higher or lower notes on the keyboard, the filter cutoff frequency changes proportionally to maintain the same relative harmonic content in the sound. Set the amount to 31 for full keyboard tracking. (Scale: 0 / 31. Default: 0).
- **3: Super Saw Filter Cutoff**: Detemines the frequency point above which the filter starts attenuating or reducing the amplitude of the sound's harmonic components. In other words, it controls the amount of frequency content that is allowed to pass through the filter. (Scale: 20 Hz / 25 kHz seconds. Default: 25 kHz).
- **4: Super Saw Filter Cutoff Mod Source**: Determines the source of the filter modulation. Choose one source from the following option list:
 - Cons = Constant maximum value, which is also the default option.
 - Rnd = Random bipolar value between -1 and +1.
 - Rnd+ = Random unipolar value between 0 and 1.
 - PB = Pitch Bend, incoming MIDI pitch bend.
 - Aft = Aftertouch, incoming MIDI channel pressure.
 - MW = Modulation Wheel.
 - Key = Keyboard position relative to C3. Value increases by 1.0 per octave.
 - Vel = Velocity, incoming MIDI velocity.
 - Amp = Amp Envelope curve shaped by the Delay, Attack, Hold, Decay, Sustain and Release settings.
 - LFO = LFO or Low Frequency Oscillator.
 - Md1 = Mod 1 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 1 Envelope section on the back panel.
 - Md2 = Mod 2 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 2 Envelope section on the back panel.
 - Gli = Glide curve.
 - NB = Note Bend envelope curve.
- 5: Super Saw Filter Cutoff Mod Amount: Determines the amount of modulation (Scale: -100 / +100. Default: 0).
- **6: Super Saw Filter Reso**: Determines the amount of emphasis or boost given to the frequencies around the filter cutoff point. The resonance can give the sound a more pronounced, "nasal" or "vocal" character and can be used creatively in sound design to add character or complexity to a sound. (Scale: 0 % / 100 %. Default: 0 %).

3.7.7 Section 7: Bode Frecuency Shifter (7)

The Bode frequency shifter is an analog circuit that produces a natural, warm sound that is popular with many sound designers and musicians. It is often used to create a range of effects, including metallic, bell-like sounds, and chorus-like textures. The Bode frequency shift (inharmonic shift in Hertz, not pitch) is applied individually to each voice.

- 1: Super Saw Shifter Mix: Determines the Dry / Wet mix. (Scale: 0 % / 100 %. Default: 0 %).
- **2: Super Saw Shifter**: Detemines the amount of linear scaling of shift, (Scale: 0% / 100 %. Default: 50 %).
- **3: Super Saw Shifter Mod Source**: Determines the source of the shifter modulation. Choose one source from the following option list:
 - Cons = Constant maximum value, which is also the default option.
 - Rnd = Random bipolar value between -1 and +1.
 - Rnd+ = Random unipolar value between 0 and 1.
 - PB = Pitch Bend, incoming MIDI pitch bend.
 - Aft = Aftertouch, incoming MIDI channel pressure.
 - MW = Modulation Wheel.
 - Key = Keyboard position relative to C3. Value increases by 1.0 per octave.
 - Vel = Velocity, incoming MIDI velocity.
 - Amp = Amp Envelope curve shaped by the Delay, Attack, Hold, Decay, Sustain and Release settings.
 - Md1 = Mod 1 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 1 Envelope section on the back panel.
 - Md2 = Mod 2 Envelope curve shaped by the Attack, Hold, Decay, Sustain and Release settings in the Mod 2 Envelope section on the back panel.
 - Gli = Glide curve.
 - NB = Note Bend envelope curve.
- **4: Super Saw Shifter Mod Amount**: Determines the amount of modulation (Scale: -100 / +100. Default: 0).
- **5: Super Saw Shifter Range**: Determines the Frequency shift in Hertz. Low values result in barber's pole phasing when Mix is set to 50% (Scale: 0,05 Hz / 5 kHz. Default: 50 Hz).
- 6: Super Saw Shifter Feedback: Determines the feedback to add overtones or increase depth of phasing. (Scale: 0 % / 100 %. Default: 0 %).
- 7: Super Saw Shifter Mode: Shifts frequencies up, down, or left and right channels in opposite directions. (Scale: 0 % / 100 %. Default: 0 %).

3.7.8 Section 8: Send Super Saw To and Bend (8)

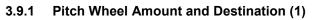
The Send To determines the signal path of the oscillator. The Bend switch determines if the Bend modulation is applied to the oscillator.

• 1: Super Saw Send To: Determines the destination of the oscillator sound.

Send to Delay		
Ben		Output
Mode	~	Delay
Auto		Chorus
		Reverb
Mix		Osc ->

You have the following options:

 Output: The oscillators sound goes straight to the Output section, bypassing all the effects.


- Delay: The oscillators sound goes to the Delay effects section, which is the default option.
- \circ $\;$ Chorus: The oscillators sound goes to the Chorus effects section.
- \circ $\;$ Reverb: The oscillators sound goes to the Linear Reverb effects section.
- Osc -> or Osc Out. On the back panel of the Dice Analog Synthersizer you can connect audio cables and route the oscillators output to an external device, such as a Line Mixer or an effect of your choice. Once connected, set the Send To to Osc Out to hear the result. Once set, the connected oscillator is subtracted from the main output internally.
- 2: Super Saw Bend: A switch to detemines if the Bend section is applied to the oscillator (Scale: On / Off. Default: Off).

3.8 Panel 3, Oscillator Tuning Modulation and LFO panel

3.9 Panel 3, Pitch Wheel Control

Although not physically present, Dice Analog Synthesizer automatically responds to an incomimg MIDI pitch wheel controller. Pitch Wheel Control can be set to different destinations with a desired amount.

1: Amt – Pitch Wheel Amount: Determines the amount the pitch wheel should apply when moved or set to maximum (Scale: 000 / 100. Default: 41). If you want to change the scale of the Pitch Wheel tuning, set the amount according to the following table:

- 029 = 1 Semitone.
- 041 = 2 Semitones.
- 050 = 3 Semitones.
- 058 = 4 Semitones.
- 065 = 5 Semitones.
- 071 = 6 Semitones.
- 076 = 7 Semitones.
- 082 = 8 Semitones.
- 087 = 9 Semitones.
- 091 = 10 Semitones.
- 096 = 11 Semitones.
- 100 = 12 Semitones.

2: Dest - Pitch Wheel Destination: Determines the destination of the pitch wheel controller (Scale: Volume, Panning and Tune. Default: Tune).

Dest	Depth
Tune	
	Vol
On	Pan
	✓ Tune

3.10 Panel 3, Bend

3.10.1 Bend (2)

Bend bends the pitch of a note.

- **1: Depth Bend Depth**: Determines the amount of pitch bend. (Scale: -50 % / +50 %. Default: 0).
- 2: A Bend Attack: Determines the time that a sound takes to peak. When you press a key on your keyboard, the envelope is triggered. The attack parameter then controls how long it should take before the controlled parameter (pitch or filter) reaches the maximum value, when you press a key. By setting attack to a value of 0, the destination parameter would reach the maximum value instantly. By raising the Envelope Attack parameter, the value will instead slowly slide to its maximum (Scale: 0 seconds / 16 seconds. Default: 0 seconds). Values in seconds (s) shown in the tool tip are based on the Bend Attack Curve set to 0 %.
- **3: H Bend Hold**: Determines how long the controlled parameter should stay at its maximum value before starting to decrease again. This can be used in combination with the Envelope Attack and Envelope Decay parameters to make a value reach its maximum level, stay there for a while (Envelope Hold) and then start dropping gradually down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 0 seconds).
- **4: D Bend Decay**: Determines the time that the sound takes to fall from the peak to the Envelope Sustain level. After the maximum value for a destination has been reached and the Envelope Hold time has expired, the controlled parameter will start to gradually drop down to the Envelope Sustain level. How long it should take before it reaches the Envelope Sustain level is controlled with the Envelope Decay parameter. If the Envelope Decay is set to 0, the value will immediately drop down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 385 ms). Values in miliseconds (ms) shown in the tooltip are based on the Envelope Decay Curve set to 50 %.

- 5: S Bend Sustain: Determines the volume (relative to the peak) when the key is held down. The Envelope Sustain parameter determines the value the Amp Envelope should drop back to after the Envelope Decay. If you set Envelope Sustain to full level however, the Envelope Decay setting doesn't matter since the value will never decrease. A combination of Envelope Decay and Envelope Sustain can be used for creating envelopes that rise up to the maximum value, then gradually decrease to, and stay on a level somewhere in-between zero and maximum (Scale: -∞ / 0 dB. Default: 0 dB).
- 6: R Bend Release: Determines the time the sound takes to die out after the key is released. This works just like the Envelope Decay parameter, with the exception that it determines the time it takes for the value to fall back to zero after the key is released (Scale: 0 seconds / 16 seconds. Default: 59,8 ms).
- 7: AC Bend Attack Curve: Determines the curve for the Envelope Attack from a slow reach to the final value, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: 0 %). Typically 75 90% for logarithmic curves.
- 8: DC Bend Decay Curve: Determines the curve for the Envelope Decay from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.
- 9: RC Bend Release Curve: Determines the curve for the Envelope Release from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.

3.11 Panel 3, LFO

3.11.1 LFO (3)


A Low Frequency Oscillator does not produce sound in the audible range and is often used as a modulation source, whereby its shape and speed can be changed. Other modulation sources which can be shaped are the oscillator's amplitude envelope, the bend envelope and the 2 mod envelopes (Mod1 and Mod2 on the back panel).

- **1: Shape LFO**: Determines the waveform for the LFO. (Scale: Sine, Triangle, Square, Saw, Random and Drift. Default: Sine).
- 2: Free LFO: Determines the duration of 1 cycle of the LFO waveform in Hz (Scale: 0,01 Hz / 100 Hz. Default: 1,00 Hz).
- 3: LFO Sync Switch: Set Rate units to Hz (cycles per second) or beats (quarternotes per cycle). Scale: On / Off. Default: Off.
- **4:** Sync LFO Rate Synced: Determines the duration of 1 cycle of the LFO waveform in beats (Scale: 1/16 to 1/1. Default: 1/4).
- **5: Trig LFO Retrigger Switch**: When Off, all voices will be modulated together in sync. When On, the LFO for each voice starts from the beginning when the note is triggered (Scale: On / Off. Default: On).

3.12 Panel 3, Glide

3.12.1 Glide (4)

Glide or Portamento makes note pitch glide from previous notes to new ones.

- **1: Time Glide Time**: The time it takes to glide from one note to the next (Scale: 0 / 100. Default: 0). When Glide Time is set to 0 the glide is turned off and thus modulation in the modulation matrix has no effect as well. Glide or its modulation will occur when the Glide Time value is set to 1 or higher (Zero = No glide, 1 = Start point of the Glide Time)..
- **2: Mod Glide Time Mod Source**: Determines the source for the Glide modulation (Scale: Cons, Rnd, Rnd+, PB, Aft, MW, Key, Vel, Amp, LFO, Md1, Md2. Default: Cons).
- **3:** Amt Glide Time Mod Amount: Determines whether the Glide Time modulation is added to the signal chain (Scale: On / Off. Default: On).
- **4: Mode Glide Mode**: Determines the glide mode. (Scale: Off: No glide, On: Always glide, Auto: Only glide if a key is already held. Default: Auto).

3.13 Panel 4, Effects and Output Panel

Dice Analog Synthesizer oscillators output can be routed to 3 effects (Delay, Reverb and Chorus) and an output section.

3.14 Panel 4, Delay

Stereo delay effect with adjustable feedback routing and left / right spread.

3.14.1 Delay (1)

• **1: On - Delay Switch**: Determines whether delay is added to the signal chain (Scale: On / Off. Default: Off).

- **2: Free Delay Time**: Determines the time of the interval between repeats of the delay in seconds (Scale: 0 seconds / 4 seconds. Default: 1 second).
- **3: Toggle switch Delay Sync Switch**: Toggles mode between a synced delay based on quarter notes and a delay in seconds (Scale: On / Off. Default: On).
- **4: Sync Delay Sync**: Determines the time of the interval between repeats of the delay based on tempo in the sequencer (Scale: 1/16 bar / 1/1 bar. Default: 1/4 bar).
- 4: FBack Delay Feedback: Determines the number of repeats of the delay (Scale: 0 % / 100 %. Default: 50 %).
- **5:** Ratio Delay Ratio: Determines the channel to reduce. Negative values reduce the left channel delay, positive values reduce the right channel delay (Scale: 50:100 / 100:50. Default: 100:50).
- **6: Damp Delay Damping**: Determines the progressive loss of high frequencies in the delay tail (Scale: 20 kHz / 1 kHz. Default: 20 kHz).
- 7: Mix Delay Mix: Determines the amount of delay mixed with the original sound (Scale: 0 % / 100 %. Default: 50 %).
- 8: Send To Delay Send To: The Send To determines the signal path of the delay effect

Send To		On	Tin
Chorus	Reverb		
	Output		
Send To	Chorus		
Reverb	Reverb		

You have the following options:

- Output: The sound of delay effect goes straight to the Output section, bypassing the chorus and reverb effects.
- o Chorus: The sound of delay effect goes to the Chorus effects section (default),
- \circ $\;$ Reverb: The sound of delay effect goes to the Linear Reverb effects section.

3.15 Panel 4, Reverb

Algorithmic reverb, emulating a digital reverb unit.

3.15.1 Linear Reverb (2)

- **1: On Reverb Switch**: Determines whether the linear reverb is added to the signal chain (Scale: On / Off. Default: Off).
- 2: Time Reverb Time: Determines the length of reverb tail (Scale: 0 % / 100 %. Default: 50 %).
- **3: PDelay Reverb Pre Delay**: Determines the initial delay before reverb (Scale: 0 ms / 200 ms. Default: 0 ms).
- **4: Damp Reverb Damping** (Reverb Damping): Determines the progressive loss of high frequencies in the reverb tail (Scale: 20 kHz / 2 kHz. Default: 20 kHz).
- **5: Mix Reverb Mix** (Reverb Mix): Mix between dry and wet signal (Scale: 0 / 100 %. Default: 50).

3.16 Panel 4, Chorus

The Chorus effect takes an audio signal and mix it with one or more delayed, pitch modulated copies.

3.16.1 Chorus (3)

- **1: On Chorus Switch**: Determines whether chorus is added to the signal chain (Scale: On / Off. Default: On).
- **2: Type Chorus Modulation Type**: Determines the modulation type. (Scale: Sine wave LFO / Square wave LFO. Default: Sine).
- **3: Rate Chorus Rate**: Determines the modulation rate in Hz (Scale: 0,10 Hz / 10 Hz. Default: 1,00 Hz).
- 4: Depth Chorus Depth: Determines the depth of the delay pitch modulation in milliseconds (Scale: 0 ms / 32 ms. Default: 8 ms).
- **5: Delay Chorus Delay**: Determines the initial delay for each voice (Scale: 0 ms / 32 ms. Default: 8 ms).
- 6: Voices Chorus Voices Amount (Chorus Voices Amount): Determines the number of chorus voices (Scale: 1, 2 or 3 voices. Default: 3 voices).
- 7: Mix Chorus Mix (Chorus Mix): Determines the amount of chorus mixed with the original sound (Scale: 0 % / 100 %. Default: 50 %).
- 8: Send To Chorus Send To: The Send To determines the signal path of the chorus effect.

You have the following options:

- Output: The sound of chorus effect goes straight to the Output section, bypassing the reverb effect.
- o Reverb: The sound of chorus effect goes to the Linear Reverb effects section.

3.17 Panel 4, Output panel

|--|

3.17.1 Output (4)

- **1: Poly- Mono Poly**: Select On if you want to play Dice Analog Synthesizer polyphonically. The maximum number of voices is 90 and the voice stealing is set to the oldest note. Select Off, if you want to play Dice Analog Synthesizer in monophonic mode and retrigger the envelopes as soon as you play a new note (Scale: On / Off. Default: On).
- **2: Tune Master Tuning**: Determines the tuning for the whole synthesizert (Scale: Cons, Rnd, Rnd+, PB, Aft, MW, Key, Vel, Amp, LFO, Md1, Md2. Default: Key).
- **3: Volume Master Volume**: Determines the master volume (Scale: -∞ / +12,0 dB. Default: 0,0 dB).

4 Back of the device

 DIC	E Analo	g Synthesi	izer Oc	nken/tein	Audio	6	Filter	rs Compa	tible 1.3.8	3		ê 💿	PICE 1	
Osc	Tune	Vol	Pan	АН	D	SR	Rnd	Cut	Res	Shift	Rng	Audio	Out	
Sine	0 *	0	0 ×		4		▦	0	0 X	0 ×	0 *	S M	O Right	
	0	0	0		5		▦	0 ×	0 X	0 ×	0	S M	O Right	
Tri	0 X	0 ×	0		аное 7 %	SR 🚺	▦	0 **	0	0 ×	0	S M	O Right	
Sub	0 *	0 *	0	During Edit	•		▦	° *	0 X	• *	0	S M	O Right	
Noise		0	0 *	6		er 🚻	▦	0	0	• *	0	S M	O Right	Ē
Saw Detune 25 %	0 *	0 ×	0 ×	%		× 🔢	▦	0 X	0 X	0 ×	0 *	S M Left	O Right	
Rey L Pan		Benc					2)enken/(ein / serial no. m 96	e renetative					
Delay		0 1		Рывск 0 💥	0	(F	ð		Revert	• 🔢 🔿 🚿)		© 🕅	
Choru	a 🔢		Rate	Depth			ନ୍)		0 0	V In O Note	CV Out O O Key Vel	Volume	

4.1 Panels overview

• Logo

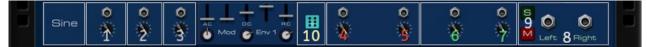
•

- Device name.
- MIDI Note indicator
- Device name.
 - **Oscillators** Panel (1) with:
 - Sine oscillator.
 - PWM (Pulse Width Modulation) oscillator.
 - Triangle oscillator.
 - Sub oscillator.
 - Noise oscillator.
 - Saw oscillator.
- Oscillator Tuning Modulation and LFO panel (2) with:
 - Power switch decoration.
 - o Bend.
 - Serial number plate decoration.
 - Cooling decoration.
- Effects and Output panel (3) with:
 - o Delay.
 - o Reverb.
 - \circ Chorus.
 - o Audio Out
 - CV In (Gate and Note)
 - CV Out (Key and Vel)
 - \circ Volume.
- Mod Envelope 1 panel (4) with:

- $_{\odot}$ Attack, Hold, Decay, Sustain and Release (AHDSR) faders.
- Mod Envelope 2 panel (5) with:
 - Attack, Hold, Decay, Sustain and Release (AHDSR) faders.
- Filters Compatible Switch (6). In version 1.0.1 the filters cuttoff and resonance are limited. In the updated version 1.1.2 the limiter on the filters is removed, making Dice Analog Synthesizer brighter and aggresive.
- Randomize configuration section (7) with.
 - Randomize Switch.
 - o Percentage fader.
 - Randomize Amp Switch (AHDSR).
 - Randomize Filters Switch.
 - Randomize Shifter Switch.
 - Randomize FX Switch.
 - Randomize Sine Switch.
 - Randomize Pulse Switch.
 - $\circ \quad \text{Randomize Triangle Switch.}$
 - Randomize Sub Switch.
 - $\circ \quad \text{Randomize Noise Switch.}$
 - o Randomize Super Saw Switch.

4.2 Oscillators Panel Overview

The oscillators section consists of 6 rows with 7 different CV inputs and a stereo audio output.


- Oscillators Rows (1 6) with:
 - 6 Oscillator types:
 - 1: Sine oscillator.
 - 2: PWM (Pulse Width Modulation) oscillator.
 - 3: Triangle oscillator.

- 4: Sub oscillator.
- 5: Noise oscillator.
- 6: Saw oscillator.

5 Panels, rows and sections

Dice Analog Synthesizer is divided in panels, each with one or more rows with sections which are separated by vertical lines in the panel. A section provides a set of various CV inputs sockets with trim knobs, CV outputs sockets, audio ouputs sockets and faders. The trim knobs are used to scale an incoming CV signal.

5.1 Panel 1, Row 1: Sine Oscillator

The Sine oscillator row has 7 CV Inputs and a stereo output.

- Oscillator Type.
- 1: Oscillator Sine Tune CV Input with trim knob.
- 2: Oscillator Sine Volume CV Input with trim knob.
- 3: Oscillator Sine Pan CV Input with trim knob.
- Mod Envelope 1:
 - Attack,
 - o Attack Curve.
 - \circ Hold,
 - o Decay,
 - o Decay Curve.
 - o Sustain,
 - o Release,
 - Release Curve.
- 4: Oscillator Sine Cutoff CV Input with trim knob.
- 5: Oscillator Sine Resonance CV Input with trim knob.
- 6: Oscillator Sine Shifter CV Input with trim knob.
- 7: Oscillator Sine Shifter Range CV Input with trim knob.
- 8: Oscillator Sine Osc Left and Right Out.
- 9: Sine Out Solo and Sine Out Mute.
- **10: Randomize Sine Switch**. Toggles between to randomize the Sine oscillator or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).

5.2 Panel 1, Row 2: PWM Oscillator

The PWM oscillator row has 8 CV Inputs and a stereo output.

- 1: Oscillator Pulse Width CV Input with trim knob.
- 2: Oscillator Pulse Tune CV Input with trim knob.
- 3: Oscillator Pulse Volume CV Input with trim knob.
- 4: Oscillator Pulse Pan CV Input with trim knob.
- Mod Envelope 2:
 - o Attack,
 - o Attack Curve.
 - $\circ \quad \text{Hold,} \quad$
 - o Decay,
 - o Decay Curve.
 - o Sustain,

- o Release,
- o Release Curve.
- 5: Oscillator Pulse Cutoff CV Input with trim knob.
- 6: Oscillator Pulse Resonance CV Input with trim knob.
- 7: Oscillator Pulse Shifter CV Input with trim knob.
- 8: Oscillator Pulse Shifter Range CV Input with trim knob.
- 9: Oscillator Pulse Osc Left and Right Out.
- 10: Pulse Out Solo and Pulse Out Mute.
- **11: Randomize Pulse Switch**. Toggles between to randomize the Pulse oscillator or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).

5.3 Panel 1, Row 3: Triangle Oscillator

The Triangle oscillator row has 7 CV Inputs and a stereo output.

- Oscillator Type.
- 1: Oscillator Triangle Tune CV Input with trim knob.
- 2: Oscillator Triangle Volume CV Input with trim knob.
- 3: Oscillator Triangle Pan CV Input with trim knob.
- 4: Oscillator Triangle Cutoff CV Input with trim knob.
- 5: Oscillator Triangle Resonance CV Input with trim knob.
- 6: Oscillator Triangle Shifter CV Input with trim knob.
- 7: Oscillator Triangle Shifter Range CV Input with trim knob.
- 8: Oscillator Triangle Osc Left and Right Out.
- 9: Triangle Out Solo and Triangle Out Mute.
- 10: Randomize Triangle Switch. Toggles between to randomize the Triangle oscillator or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).

5.4 Panel 1, Row 4: Sub Oscillator

The Sub oscillator row has 7 CV Inputs and a stereo output.

- Oscillator Type.
- 1: Oscillator Sub Tune CV Input with trim knob.
- 2: Oscillator Sub Volume CV Input with trim knob.
- 3: Oscillator Sub Pan CV Input with trim knob.
- 4: Oscillator Sub Cutoff CV Input with trim knob.
- 5: Oscillator Sub Resonance CV Input with trim knob.
- 6: Oscillator Sub Shifter CV Input with trim knob.
- 7: Oscillator Sub Shifter Range CV Input with trim knob.
- 8: Oscillator Sub Osc Left and Right Out.
- 9: Sub Out Solo and Sub Out Mute.
- **10: Randomize Sub Switch**. Toggles between to randomize the Sub oscillator or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).

5.5 Panel 1, Row 5: Noise Oscillator

The Noise oscillator row has 6 CV Inputs and a stereo output.

- Oscillator Type.
- 1: Oscillator Noise Volume CV Input with trim knob.
- 2: Oscillator Noise Pan CV Input with trim knob.
- **3: Oscillator Noise Cutoff CV Input** with trim knob.
- 4: Oscillator Noise Resonance CV Input with trim knob.
- 5: Oscillator Noise Shifter CV Input with trim knob.
- 6: Oscillator Noise Shifter Range CV Input with trim knob.
- 7: Oscillator Noise Osc Left and Right Out.
- 8: Noise Out Solo and Noise Out Mute.
- **9: Randomize Noise Switch**. Toggles between to randomize the Noise oscillator or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).

5.6 Panel 1, Row 6: Super Saw Oscillator

The Super Saw oscillator row has 7 CV Inputs and a stereo output.

- Oscillator Type.
- 1: Super Saw Detune. (Scale: 0 % / 100 %. Default: 25 %)
- 2: Oscillator Super Saw Tune CV Input with trim knob.
- 3: Oscillator Super Saw Volume CV Input with trim knob.
- 4: Oscillator Super Saw Pan CV Input with trim knob.
- 5: Oscillator Super Saw Cutoff CV Input with trim knob.
- 6: Oscillator Super Saw Resonance CV Input with trim knob.
- 7: Oscillator Super Saw Shifter CV Input with trim knob.
- 8: Oscillator Super Saw Shifter Range CV Input with trim knob.
- 9: Oscillator Super Saw Osc Left and Right Out.
- 10: Super Saw Out Solo and Super Saw Out Mute.
- 11: Randomize Super Saw Switch. Toggles between to randomize the Super Saw oscillator or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).

5.7 Panel 2, Bend

Bend has 1 CV Input.

- **1: Key to Pan**: Determines the amount of panning according the key played (Scale: 0 / 100. Default: 0).
- 2: Limit Limiter Switch: Low-CPU safety limiter to keep levels in check, with a fixed 0 dBFS threshold (Scale: On / Off. Default: On).
- 3: Bend Depth CV Input with trim knob.
- **4: Randomize Bend Switch:** Toggles between to randomize Bend section or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).

5.8 Panel 3, Effects and Output Panel

Delay 👯	0 💥		Ø X	Reverb 🚺	Time O	2		
Chorus 👯	Hate O 🔆	o 3	Ø 💥	Audio Uut O O Left Right	Gate Note		Volume O	

Dice Analog Synthesizer oscillators output can be routed to 3 effects which have several CV Inputs,

- 1: Delay.
- 2: Reverb.
- 3: Chorus.
- 4: And an output section.

5.9 Panel 3, Delay

- 1: Randomize Delay Switch: Toggles between to randomize Delay section or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- 2: Delay Time CV Input with trim knob.
- 3: Delay Feedback CV Input with trim knob.
- 4: Delay Ratio CV Input with trim knob.
- 5: Delay Mix CV Input with trim knob.

5.10 Panel 3, Reverb

- 1: Randomize Reverb Switch: Toggles between to randomize Reverb section or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- 2: Reverb Time CV Input with trim knob.
- 3: Reverb Mix CV Input with trim knob.

5.11 Panel 3, Chorus

- 1: Randomize Chorus Switch: Toggles between to randomize Chorus section or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- 2: Chorus Rate CV Input with trim knob.
- 3: Chorus Depth CV Input with trim knob.
- 4: Chorus Mix CV Input with trim knob.

5.12 Panel 3, Audio Out

These are the main audio Left (1) and Right (2) outputs. When you create a new Dice Analog Synthesizer device, these outputs are auto-routed to the first available channel in the Reason main mixer.

5.13 Panel 3, CV Input Gate and Note

Control Voltage (CV) Input for Gate (1) and Note (2).

5.14 Panel 3, CV Output Velocity and Key

Control Voltage (CV) Output. The Velocity (1) and the position of the Key (2) of your MIDI controller are translated into unipolar control voltage.

5.15 Panel 3: CV Input Volume

• 1: Master Volume CV Input with trim knob..

5.16 Panel 4, Mod Envelope 1

The Mod Envelope sare used to make an AHDSR curve which are used as a modulation source in a modulation matrix.

- 1: A Mod Envelope 1 Attack: Determines the time that a sound takes to peak. When you press a key on your keyboard, the envelope is triggered. The attack parameter then controls how long it should take before the controlled parameter (pitch or filter) reaches the maximum value, when you press a key. By setting attack to a value of 0, the destination parameter would reach the maximum value instantly. By raising the Envelope Attack parameter, the value will instead slowly slide to its maximum (Scale: 0 seconds / 16 seconds. Default: 0 seconds). Values in seconds (s) shown in the tool tip are based on the Mod Envelope 1 Attack Curve set to 0 %.
- 2: H Mod Envelope 1 Hold: Determines how long the controlled parameter should stay at its maximum value before starting to decrease again. This can be used in combination with the Envelope Attack and Envelope Decay parameters to make a value reach its maximum level, stay there for a while (Envelope Hold) and then start dropping gradually down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 0 seconds).
- **3:** D Mod Envelope 1 Decay: Determines the time that the sound takes to fall from the peak to the Envelope Sustain level. After the maximum value for a destination has been reached and the Envelope Hold time has expired, the controlled parameter will start to gradually drop down to the Envelope Sustain level. How long it should take before it reaches the Envelope Sustain level is controlled with the Envelope Decay parameter. If the Envelope Decay is set to 0, the value will immediately drop down to the Envelope Sustain level (Scale: 0 seconds / 16 seconds. Default: 385 ms). Values in miliseconds (ms) shown in the tooltip are based on the Envelope Decay Curve set to 50 %.
- 4: S Mod Envelope 1 Sustain: Determines the volume (relative to the peak) when the key is held down. The Envelope Sustain parameter determines the value the Amp Envelope should drop back to after the Envelope Decay. If you set Envelope Sustain to full level however, the Envelope Decay setting doesn't matter since the value will never decrease. A combination of Envelope Decay and Envelope Sustain can be used for creating envelopes that rise up to the maximum value, then gradually decrease to, and stay on a level somewhere in-between zero and maximum (Scale: -∞ / 0 dB. Default: 0 dB).
- 5: R Mod Envelope 1 Release: Determines the time the sound takes to die out after the key is released. This works just like the Envelope Decay parameter, with the exception that it

determines the time it takes for the value to fall back to zero after the key is released (Scale: 0 seconds / 16 seconds. Default: 59,8 ms).

- 6: AC Mod Envelope 1 Attack Curve: Determines the curve for the Envelope Attack from a slow reach to the final value, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: 0 %). Typically 75 90% for logarithmic curves.
- 7: DC Mod Envelope 1 Decay Curve: Determines the curve for the Envelope Decay from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.
- 8: RC Mod Envelope 1 Release Curve: Determines the curve for the Envelope Release from a slow reach to the final, following a linear curve, to a fast reach of the final value, following a logarithmic curve (Scale: -100 % / +100 %. Default: -50 %). Typically 75 90% for logarithmic curves.

5.17 Panel 5, Mod Envelope 2

Works as Mod Envelope 1 (see above)

5.18 Panel 6, Filters Compatible

• Filters Compatible Switch: Determines if a limiter is applied to the filters cutoff and resonance. Toggles between Dice version numbers. Version 1.3.8 has no limiter applied to the filters (Scale: Blue button 1.3.8 = Off / Green button 1.0.1 = On. Default = Off).

				-	and the second						
Osc	Tune	Vol	Pan	AH		S	R	Rnd	Cut	Res	3 Shit
Sine	0 💥	0	0			Env 1		B	0	0 N	0 X
	0 ×	0	0			Env 2		₽	0	0 N	o X
Tri	0 *	0	0 ×	1�	анс 2	& '		뉢	0	0 N	o X
Sub	0	0	0	Duning Edit		iring 96 C iens	₿	¥	0	0	o X
Noise		0	0 X		Shi	fter	▦	1₽	0 X	0 N	0 X
Saw Detune 25 %	0	0	0 X	96	4	FX	Ħ	₩	0	0 N	0
Key Li Pan		Hanne Benc	Depth O					•	Denken/tein serial no. m	TT I	
	ó ⊞	Free O		FBack				Mix O		Rev	⊧76 ⊞¢
Ch <u>d</u> h	}₌ ⊞		Rate					Mix O	5	Aud O Left	Right (

5.19 Panel 7, Randomizer Configuration Section

In Dice Analog Synthesizer version 1.3.8 a randomize play and edit mode system is added.

In random play and edit mode, all the marine blue colored faders and knobs from the Amp Envelope (AHDSR), Filters Envelope, the Bode Frequency Shifter, Bend, Delay, Reverb and Chorus sections get randomised from its current position according to a Seed Percentage.

The Randomize Switch on the front panel or the big Randomize Switch on the back panel (3) activates / deactivates the random play and edit mode.

The Percentage knob on the front panel or the Percentage fader on the back panel (4) determines the Seed Percentage to apply when randomisation is active. A low percentage setting (15 %) wil change the sound of the current patch slighty. A high percentage (90 %) wil change the sound drastically.

The configuration on what the (big) Randomize Switch (3) should randomize can be found on the back panel.

The Randomizer Configuration section:

- First there are two configuration switches, Randomize During Edit Switch (1) and Randomize During Percentage Switch (2):
 - Randomize During Edit Switch (1):

When turned On, randomisation takes places when you move a marine blue fader or knob. When turned Off (default), randomisation does not takes places when you move a marine blue fader or knob. Although the Randomize Switch is On, the faders and knobs behave like in 'Normal' mode.

• Randomize During Percentage Switch (2):

When turned On (default), randomisation takes places when you move Percentage. When turned Off, randomisation does not takes places when you move Percentage. You need to turn the Randomize Switch Off and On again to hear the change.

- Second there is a column with Randomize Switches to set the randomization process on or off for:
 - The Amp Envelope (AHDSR) section for all the six oscillators (5).
 - The Filters Envelope section on for the six oscillators (6).
 - The Bode Frequency Shifter section for all the six oscillators (7).
 - And all the Effects including the Bend (15, 16, 17 and 18).
- Third there is a column with Randomize Switches to set the randomization process on or off for the six oscillators individually (9, 10, 11, 12, 13 and 14).
 On each oscillator the Amp Envelope (AHDSR), Filters Envelope and the Bode Frequency Shifter can be randomised.

Please notice: Changes made during Random play and edit mode are not stored in .repatch nor .cmb combinator patches. All other changes in 'Normal' mode are stored.

- **1: Randomize During Edit Switch:** When turned On, randomisation takes places when you move a marine blue fader or knob. When turned Off (default), randomisation does not takes places when you move a marine blue fader or knob and even when the Randomize Switch is On, the faders and knobs behave like in 'Normal' mode (Scale: Red dice = Off / Marine Blue.dice = On. Default = Off).
- 2: Randomize During Percentage Switch: When turned On (default), randomisation takes places when you move Percentage. When turned Off, randomisation does not takes places when you move Percentage. You need to turn the Randomize Switch Off and On again to hear the change (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- **3: Randomize Switch:** Toggles between to randomize Dice Analog Synthesizer or not (Scale: Red dice = Off / Marine Blue.dice = On. Default = Off).
- 4: Percentage: The Percentage knob on the front panel or the Percentage fader on the back panel determines the Seed Percentage to apply when randomisation is active. A low percentage setting (15 %) wil change the sound of the current patch slighty. A high percentage (90 %) wil change the sound drastically (Scale: 0 % / 100 %. Default = 50 %).
- **5: Randomize Amp Switch:** Toggles between to randomize Amp envelope section (AHDSR) or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- 6: Randomize Filters Switch: Toggles between to randomize Filter section (cutoff and resonance) or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- 7: Randomize Shifter Switch: Toggles between to randomize Frequency Shifter section (Shifter Mix, Shifter, Shifter Range and Shifter Feedback) or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- 8: Randomize FX Switch: Toggles between to randomize the marine blue colored knobs and faders in the effects section (Bend, Delay, Reverb and Chorus) or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- 9: Randomize Sine Switch: Toggles between to randomize the marine blue colored knobs and faders on the Sine oscillator or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- **10: Randomize Pulse Switch:** Toggles between to randomize the marine blue colored knobs and faders on the Pulse oscillator or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- **11: Randomize Triangle Switch:** Toggles between to randomize the marine blue colored knobs and faders on the Triangle oscillator or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- **12: Randomize Sub Switch:** Toggles between to randomize the marine blue colored knobs and faders on the Sub oscillator or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).

- **13: Randomize Noise Switch:** Toggles between to randomize the marine blue colored knobs and faders on the Noise oscillator or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- **14: Randomize Super Saw Switch:** Toggles between to randomize the marine blue colored knobs and faders on the Super Saw oscillator or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- **15: Randomize Bend Switch:** Toggles between to randomize the marine blue colored faders on in the Bend section or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- **16: Randomize Delay Switch:** Toggles between to randomize the marine blue colored knobs in the Delay section or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- **17: Randomize Reverb Switch:** Toggles between to randomize the marine blue colored knobs in the Reverb section or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).
- **18: Randomize Chorus Switch:** Toggles between to randomize the marine blue colored knobs in the Chorus section or not when the Randomize switch is On (Scale: Red dice = Off / Marine Blue.dice = On. Default = On).

6 Patches

•

6.1 Randomizing Patches on the website

All Reason devices work with patches. Patches are stored as a text file on your computer. The text file has .repatch as file extension.

🛚 Bass - Ruff - LQ.repatch	20-1-2023 21:19	Rack Extension pa	27 kB
Re FX - Winter.repatch	8-1-2023 13:00	Rack Extension pa	27 kB
💀 Keys - Continental.repatch	8-1-2023 13:04	Rack Extension pa	27 kB
💀 Keys - Impacting and Bright - bes.repatch	8-1-2023 13:06	Rack Extension pa	27 kB
🔞 Keys - Organick - LQ.repatch	20-1-2023 21:19	Rack Extension pa	28 kB
💀 Lead - Slide21 - LQ.repatch	20-1-2023 21:19	Rack Extension pa	27 kB
💀 Lead - Super - LQ.repatch	20-1-2023 21:19	Rack Extension pa	28 kB
💀 Pad - Burst - LQ.repatch	20-1-2023 21:19	Rack Extension pa	28 kB
💀 Pad - Gliding Through the Bend.repatch	8-1-2023 13:14	Rack Extension pa	27 kB
💀 Pad - Soft Piano - LQ.repatch	20-1-2023 21:19	Rack Extension pa	28 kB

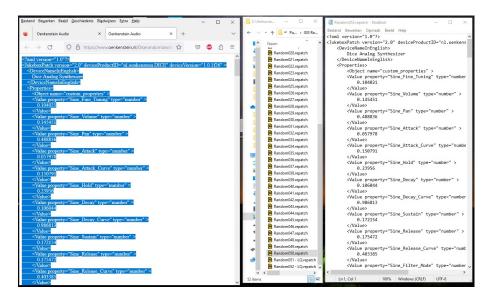
When you open the text file with a text editor you can see that it has a XML format.

```
Bass - Ruff - LQ.repatch - Kladblok
                                                                                          X
Bestand Bewerken Opmaak Beeld Help
<?xml version="1.0"?>
<JukeboxPatch version="2.0" deviceProductID="nl.oenkenstein.DICE" deviceVersion="1.0.1f30" >
   <DeviceNameInEnglish>
       Dice Analog Synthesizer
   </DeviceNameInEnglish>
   <Properties>
       <Object name="custom properties" >
            <Value property="Sine_Tuning" type="number" >
                0.5
            </Value>
            <Value property="Sine_Fine_Tuning" type="number" >
                0.5
            </Value>
            <Value property="Sine_Volume" type="number" >
                0.5488998889923095703125
            </Value>
            <Value property="Sine_Pan" type="number" >
                0.5
            </Value>
```

Dice Analog Synthesizer has a website where you can generate randomized XML .repatch files: <u>www.oenkenstein.nl/dicerandomize.asp</u>

Oen,	kenstein Audio	Products	Downloads	Media	Contact			
	Dice Analog S	ynthesizer random	.repatch file generate	or.				
	Randomize parts of the Dice Analog Synthesizer							
	To randomize: Submit the form. Then copy and paste the text below from the frame into a new or existing .repatch file. You also can randomize by sections of the Dice Analog Synthesizer or randomize by oscillators.							
	Remark							
	Set the minumum (0) and maximum (100) values to randomize Dice Analog Synthesizer:							
	Randomize							
		Oenkenstein Audio. Copyr	ight 2023.					

Once you have submitted the form by clicking on the Randomize button, the results are presented as an XML .repatch file in a frame.


Image: Section	nthesizer random .repatch file generator.
Set the minumum (0) and maximum (100) values to randomize Dice Analog Synthesizer: Randomize Randomized on: 17-4-2023 at 11:56:49 with the following conditions: Min = 0 Max = 50 The XML .repatch file: Or view the XML File in a seperate page or tab Viewbox Watch version="1.0.1f26" > Colspan="2">Viewbox Watch version="1.0.1f26" > Colspan="2">Viewbox Watch version="1.0.1f26" > Of view the XML File in a seperate page or tab Of view the XML File in a seperate page or tab View the XML File in a seperate page or tab	ze parts of the Dice Analog Synthesizer
Remark Min Max Set the minumum (0) and maximum (100) values to randomize Dice Analog Synthesizer: 0 50 Randomize Randomize 0 50 Randomized on: 17-4-2023 at 11:56:49 with the following conditions: Min = 0 Max = 50 The XML .repatch file: Or view the XML File in a seperate page or tab Viewbox Watch version="1.0.1f26" > Viewbox Watch version="2.0" deviceProductID="nl.oenkenstein.DICE" deviceVersion="1.0.1f26" > Object name="custom_properties" > Value property="Sine_Fine_Tuning" type="number" >	
Set the minumum (0) and maximum (100) values to randomize Dice Analog Synthesizer: Randomize Randomized on: 17-4-2023 at 11:56:49 with the following conditions: Min = 0 Max = 50 The XML .repatch file: Or view the XML File in a seperate page or tab Viewbox Watch version="1.0.1f26" > Colspan="2">Viewbox Watch version="1.0.1f26" > Colspan="2">Viewbox Watch version="1.0.1f26" > Of view the XML File in a seperate page or tab Of view the XML File in a seperate page or tab View the XML File in a seperate page or tab	
Randomize Randomize Randomize Randomize Randomize Randomize Randomize Randomize The XML .repatch file: Or view the XML File in a seperate page or tab xml version="1.0"? <jukeboxpatch deviceproductid="nl.oenkenstein.DICE" deviceversion="1.0.1f26" version="2.0"> <devicenameinenglish> Dice Analog Synthesizer <devicenameinenglish> <properties> <object name="custom_properties"> <object name="custom_properties"> <value property="Sine_Fine_Tuning" type="number"> <0.328182</value></object></object></properties></devicenameinenglish></devicenameinenglish></jukeboxpatch>	
Randomized on: 17-4-2023 at 11:56:49 with the following conditions: Min = 0 Max = 50 The XML .repatch file: Or view the XML File in a seperate page or tab xml version="1.0"? <jukeboxpatch deviceproductid="nl.oenkenstein.DICE" deviceversion="1.0.1f26" version="2.0"> <pevicenameinenglish> Dice Analog Synthesizer <devicenameinenglish> <properties> <object name="custom_properties"> <object name="custom_properties"> <value property="Sine_Fine_Tuning" type="number"> 0.328182 <values< td=""> <value property="Sine_Volume" type="number"> 0.245323 <value property="Sine_Pan" type="number"> 0.02506</value></value></values<></value></object></object></properties></devicenameinenglish></pevicenameinenglish></jukeboxpatch>	100) values to randomize Dice Analog Synthesizer:
Min = 0 Max = 50 The XML .repatch file: Or view the XML File in a seperate page or tab <td>Randomize</td>	Randomize
The XML .repatch file: Or view the XML File in a seperate page or tab <pre> </pre> <pre> <td>-4-2023 at 11:56:49 with the following conditions:</td></pre>	-4-2023 at 11:56:49 with the following conditions:
<pre>Or view the XML File in a seperate page or tab </pre> <pre> </pre> <pre< td=""><td></td></pre<>	
<pre><jukeboxpatch deviceproductid="nl.oenkenstein.DICE" deviceversion="1.0.1f26" version="2.0"></jukeboxpatch></pre>	
<vre> </vre>	> g" type="number" > pe="number" > number" > e="number" > we" type="number" > s"number" >

Select the text from the frame and copy paste it into a new or existing .repatch file, which you can open with a text editor. If you have selected all the text in one go, remove the space in front of the first line of the pasted text after the pasting.

Then the text should look like this:

Now save the .repatch file with a suitable name and load the patch in Dice Analog Synthesizer.

You can also view the results in a separate tab or window and copy / paste the text in a .repatch file. When you press F5 or refresh the web browser tab or page, the results get randomized again. This allows you to make a lot of randomized patches in a short time as you do not have enter all the questions in the form again.

A result in Reason:

6.2 Patch List

List of all the patches released with the Dice Analog Synthesizer Rack Extension. Included are 160 signature patches made by 3 sound designers.

Please notice: 30 combinator patches in the '002 Combinators Reason 12' folder require Reason 12.

The following combinator patches in the '002 Combinators Reason 12' folders are using 5 third party Rack Extensions, which are free to download:

- Janittor CV Shaper by Lectric Panda LLC in the patch Bass RUN Acid Machine LQ. <u>https://www.reasonstudios.com/shop/rack-extension/janitor-cv-shaper/</u>
- Janittor CV Shaper by Lectric Panda LLC in the patch Bass RUN Random Acid Machine LQ. https://www.reasonstudios.com/shop/rack-extension/janitor-cv-shaper/
- Janittor CV Shaper by Lectric Panda LLC in the patch Drone Endless Waiting LQ.cmb https://www.reasonstudios.com/shop/rack-extension/janitor-cv-shaper/
- Janittor CV Shaper by Lectric Panda LLC in the patch FX Frequency Shift LQ.cmb https://www.reasonstudios.com/shop/rack-extension/janitor-cv-shaper/
- Miranda CV Delay Merger by Jiggery-Pokery Sound in the patch Drone Sick LQ.cmb. <u>https://www.reasonstudios.com/shop/rack-extension/miranda-cv-delay-merger/</u>
- Lolth CV Delay Splitter by Jiggery-Pokery Sound in the patch FX Bender LQ.cmb.

https://www.reasonstudios.com/shop/rack-extension/lolth-cv-delay-splitter/

- Lolth CV Delay Splitter by Jiggery-Pokery Sound in the patch FX Doomwanderer LQ.cmb. <u>https://www.reasonstudios.com/shop/rack-extension/lolth-cv-delay-splitter/</u>
- GClip Waveshaping Clipper by GVXT LTD in the patch Keys Trance Anthem LQ.cmb. <u>https://www.reasonstudios.com/shop/rack-extension/gclip-waveshaping-clipper/</u>
- kHs Trance Gate by Kilohearts AB in the patch Keys Trancy Arps LQ.cmb. https://www.reasonstudios.com/shop/rack-extension/khs-trance-gate/

The following 12 combinators have a 'RUN' button:

- Bass RUN Acid Machine LQ
- Bass RUN Random Acid Machine LQ
- Bass The Lucky One LQ
- Drum RUN Kick
- FX Doomwanderer LQ
- FX Frequency Shift LQ
- Lead Dice Cube Runner LQ
- Lead Psycholine LQ
- Perc High Hats LQ
- Perc RUN Elektro Drumkit
- Pluck Jumping Arps LQ
- Pluck Jumping Jack LQ

6.3 The sound designers

• Loque (LQ).

Loque provided most of the patches and created a lot of Reason12 RUN combinators aimed for the specific house, techno and trance genres.

• Bes (Bes).

Bes made 6 patches. The Reason 12 combinator Piano Bouncey is a light electronic piano and is an example of all the Bes patches: A short attack and decay, but with interesting sustain and release.

• Oenkenstein.

He made some bread and butter patches. In each folder there is at least one Oenkenstein patch. The patches are made as a starting point for randomisation for each type of instrument.

6.4 The Patches

001 Combinators Reason 10 002 Combinators Reason 12 003 Random Generated by Website Bass FX Keys Lead Pad Perc Pluck Bass - Pad.repatch Bass - Ruff - LQ.repatch FX - Winter.repatch Keys - Continental.repatch Keys - Impacting and Bright - bes.repatch Keys - Organick - LQ.repatch Lead - Slide21 - LQ.repatch

Lead - Super - LQ.repatch Pad - Burst - LQ.repatch Pad - Gliding Through the Bend.repatch Pad - Random Through the Bend.repatch Pad - Soft Piano - LQ.repatch Pad - Start Randomizing.repatch 001 Combinators Reason 10\Bass- High Mod - LQ.cmb 001 Combinators Reason 10\Dice Init Patch.cmb 001 Combinators Reason 10\Drum - RUN - Kick.cmb 001 Combinators Reason 10\FX - Glassdrops - LQ.cmb 001 Combinators Reason 10\Pad - Start Randomizing.cmb 002 Combinators Reason 12\Bass - High Mod - LQ.cmb 002 Combinators Reason 12\Bass - RUN - Acid Machine - LQ.cmb 002 Combinators Reason 12\Bass - RUN - Random Acid Machine - LQ.cmb 002 Combinators Reason 12\Bass - The Lucky One - LQ.cmb 002 Combinators Reason 12\Dice Init Reason 12 Frequency.cmb 002 Combinators Reason 12\Drone - Endless Waiting - LQ.cmb 002 Combinators Reason 12\Drone - Hidden Brainfog -LQ.cmb 002 Combinators Reason 12\Drone - Sick - LQ.cmb 002 Combinators Reason 12\FX - Bender - LQ.cmb 002 Combinators Reason 12\FX - Delayed Oscillators.cmb 002 Combinators Reason 12\FX - Diceboy -LQ.cmb 002 Combinators Reason 12\FX - Doomwanderer - LQ.cmb 002 Combinators Reason 12\FX - Frequency Shift - LQ.cmb 002 Combinators Reason 12\FX - Glassdrops.cmb 002 Combinators Reason 12\FX - Jaja -LQ.cmb 002 Combinators Reason 12\FX - Throw the Dice.cmb 002 Combinators Reason 12\Keys - Dicey - Bes.cmb 002 Combinators Reason 12\Keys - External Output.cmb 002 Combinators Reason 12\Keys - Piano Bouncey - Bes.cmb 002 Combinators Reason 12\Keys - Saw Formant.cmb 002 Combinators Reason 12\Keys - Trance Anthem - LQ.cmb 002 Combinators Reason 12\Keys - Trance Arps - LQ.cmb 002 Combinators Reason 12\Keys - Trancy Arps - LQ.cmb 002 Combinators Reason 12\Lead - Dice Cube Runner - LQ.cmb 002 Combinators Reason 12\Lead - Psycholine - LQ.cmb 002 Combinators Reason 12\Pad - Passionated Gate - LQ.cmb 002 Combinators Reason 12\Perc - High Hats - LQ.cmb 002 Combinators Reason 12\Perc - RUN - Elektro Drumkit.cmb 002 Combinators Reason 12\Pluck - Jumping Arps - LQ.cmb 002 Combinators Reason 12\Pluck - Jumping Jack - LQ.cmb 003 Random Generated by Website\Random001.repatch 003 Random Generated by Website\Random002.repatch 003 Random Generated by Website\Random003.repatch 003 Random Generated by Website\Random004.repatch 003 Random Generated by Website\Random005.repatch 003 Random Generated by Website\Random006.repatch 003 Random Generated by Website\Random007.repatch 003 Random Generated by Website\Random008.repatch 003 Random Generated by Website\Random009.repatch 003 Random Generated by Website\Random010.repatch 003 Random Generated by Website\Random011.repatch 003 Random Generated by Website\Random012.repatch 003 Random Generated by Website\Random013.repatch

003 Random Generated by Website\Random014.repatch 003 Random Generated by Website\Random015.repatch 003 Random Generated by Website\Random016.repatch 003 Random Generated by Website\Random017.repatch 003 Random Generated by Website\Random018.repatch 003 Random Generated by Website\Random019.repatch 003 Random Generated by Website\Random020.repatch 003 Random Generated by Website\Random021.repatch 003 Random Generated by Website\Random022.repatch 003 Random Generated by Website\Random023.repatch 003 Random Generated by Website\Random024.repatch 003 Random Generated by Website\Random025.repatch 003 Random Generated by Website\Random026.repatch 003 Random Generated by Website\Random027.repatch 003 Random Generated by Website\Random028.repatch 003 Random Generated by Website\Random029.repatch 003 Random Generated by Website\Random030.repatch 003 Random Generated by Website\Random031.repatch 003 Random Generated by Website\Random032.repatch 003 Random Generated by Website\Random033.repatch 003 Random Generated by Website\Random034.repatch 003 Random Generated by Website\Random035.repatch 003 Random Generated by Website\Random036.repatch 003 Random Generated by Website\Random037.repatch 003 Random Generated by Website\Random038.repatch 003 Random Generated by Website\Random039.repatch 003 Random Generated by Website\Random040.repatch 003 Random Generated by Website\Random041.repatch 003 Random Generated by Website\Random042.repatch 003 Random Generated by Website\Random043.repatch 003 Random Generated by Website\Random044.repatch 003 Random Generated by Website\Random045.repatch 003 Random Generated by Website\Random046.repatch 003 Random Generated by Website\Random047.repatch 003 Random Generated by Website\Random048.repatch 003 Random Generated by Website\Random049.repatch 003 Random Generated by Website\Random050.repatch 003 Random Generated by Website\Random051 - LQ.repatch 003 Random Generated by Website\Random052 - LQ.repatch Bass\Bass - Analog.repatch Bass\Bass - Bass.repatch Bass\Bass - Blob - LQ.repatch Bass\Bass - Contra - LQ.repatch Bass\Bass - Down - LQ.repatch Bass\Bass - Dull Vinyl - LQ.repatch Bass\Bass - Juicy - LQ.repatch Bass\Bass - Old Computer - LQ.repatch Bass\Bass - Old Computer Later - LQ.repatch Bass\Bass - Plopp - LQ.repatch Bass\Bass - Pumping Heart - LQ.repatch Bass\Bass - Reso - LQ.repatch Bass\Bass - Ruff Phase - LQ.repatch Bass\Bass - Sweating Pulse - LQ.repatch Bass\Bass - Wobber - LQ.repatch

Bass\Bass - Wobble - LQ.repatch FX\FX - Brassdude - LQ.repatch FX\FX - Eerie.repatch FX\FX - Fadin - LQ.repatch FX\FX - Glassdrops - LQ.repatch FX\FX - Metalstick - LQ.repatch FX\FX - Mimicrap - LQ.repatch FX\FX - Sprinting Ball - LQ.repatch FX\FX - Tip - LQ.repatch FX\FX - Wind Wave.repatch Keys\Keys - Arpy Voice.repatch Keys\Keys - Elektronika.repatch Keys\Keys - Harmonium.repatch Keys\Keys - Keys.repatch Keys\Keys - Sweaty - bes.repatch Keys\Keys - Talking Organ.repatch Keys\Keys - Voxy Bassy.repatch Keys\Keys - Warm Aah.repatch Keys\Keys - Wow Wave.repatch Lead\Lead - Mono Lead.repatch Lead\Lead - Shif-Ting - LQ.repatch Lead\Lead - Sweatheart - LQ.repatch Lead\Lead - The Noise - LQ.repatch Pad\Pad - Cold Air - LQ.repatch Pad\Pad - Sad - LQ.repatch Pad\Pad - Starmarine - LQ.repatch Pad\Pad - Starmarine Brilliance - LQ.repatch Pad\Pad - Tweety vs Tom - LQ.repatch Pad\Pad - Warm Pad.repatch Perc\Perc - Bella - LQ.repatch Perc\Perc - Conga - LQ.repatch Perc\Perc - Electro Kick - LQ.repatch Perc\Perc - HiHats - LQ.repatch Perc\Perc - Kick Subby.repatch Perc\Perc - Snare.repatch Perc\Perc - Synth in a Sink - Bes.repatch Perc\Perc - The Old Phone and Drum patch - bes.repatch Pluck\Pluck - Inharmonic Bell - LQ.repatch Pluck\Pluck - My Friend - LQ.repatch Pluck\Pluck - Reasonate (Slapback) - LQ.repatch Pluck\Pluck - Reasonate - LQ.repatch Pluck\Pluck - The Lil Strum - LQ.repatch Pluck\Pluck - Toy Piano - LQ.repatch Pluck\Pluck - Vibrorgan - LQ.repatch Pluck\Pluck - Wodd Player - LQ.repatch

7 Credits

- Reasontalk, for the beta test forum hosting.
- Reason Studios for their support.
- Loque and Bes, signature patches.
- Anne, who gave me the parts of a speaking doll, who could randomly say short sentences.
- NoiseShadow for 2 free available refills with more then 5000 randomized patches: <u>Diced Patches v1.zip</u> and <u>Diced Patches v2.zip</u>.
- All the beta testers.

8 MIDI Implementation Chart

In the table below, first the MIDI CC Number is mentioned and is followed by the name of the function in Dice Analog Synthesizer:

[12] Randomize Switch [13] Percentage [14] Filters Switch [15] Shifter_Switch [16] Sine Tuning [17] Sine Fine Tuning [18] Sine_Volume [19] Sine_Pan [20] Sine_Attack [21] Sine_Attack_Curve [22] Sine Hold [23] Sine Decay [24] Sine_Decay_Curve [25] Sine_Sustain [26] Sine_Release [27] Sine Release Curve [28] Sine Filter Mode [29] Sine Filter Key Tracking [30] Sine Filter Cutoff [31] Sine Filter Cutoff Mod Source [33] Sine_Filter_Cutoff_Mod_Amount [34] Sine_Filter_Reso [35] Sine Shifter Mix [36] Sine_Shifter [37] Sine Shifter Mod Source [39] Sine_Shifter_Mod_Amount [40] Sine Shifter Range [41] Sine_Shifter_Feedback [42] Sine_Shifter_Mode [43] Send Sine To [44] Sine Bend [45] Pulse Width [46] Pulse_Tuning [47] Pulse_Fine_Tuning [48] Pulse_Volume [49] Pulse Pan [50] Pulse_Attack [51] Pulse Attack Curve [52] Pulse_Hold [53] Pulse Decay [54] Pulse Decay Curve [55] Pulse Sustain [56] Pulse Release [57] Pulse_Release_Curve [58] Pulse_Filter_Mode [59] Pulse_Filter_Key_Tracking [60] Pulse Filter Cutoff [61] Pulse_Filter_Cutoff_Mod_Source [62] Pulse Filter Cutoff Mod Amount [63] Pulse_Filter_Reso

[65] Pulse Shifter Mix [66] Pulse_Shifter [67] Pulse Shifter Mod Source [68] Pulse Shifter Mod Amount [69] Pulse Shifter Range [70] Pulse Shifter Feedback [71] Pulse Shifter Mode [72] Send Pulse To [73] Pulse Bend [74] Triangle Tuning [75] Triangle Fine Tuning [76] Triangle Volume [77] Triangle_Pan [78] Triangle Attack [79] Triangle_Attack_Curve [80] Triangle Hold [81] Triangle Decay [82] Triangle Decay Curve [83] Triangle_Sustain [84] Triangle_Release [85] Triangle_Release_Curve [86] Triangle Filter Mode [87] Triangle Filter Key Tracking [88] Triangle Filter Cutoff [89] Triangle Filter Cutoff Mod Source [90] Triangle_Filter_Cutoff_Mod_Amount [91] Triangle_Filter_Reso [92] Triangle Shifter Mix [93] Triangle Shifter [94] Triangle Shifter Mod Source [95] Triangle Shifter Mod Amount [102] Triangle_Shifter_Range [103] Triangle Shifter Feedback [104] Triangle Shifter Mode [105] Send Triangle To [106] Triangle Bend [107] Sub_Tuning [108] Sub Fine Tuning [109] Sub_Volume [110] Sub Pan [111] Sub Attack [112] Sub_Attack_Curve [113] Sub_Hold [114] Sub_Decay [115] Sub_Decay_Curve [116] Sub Sustain [117] Sub Release [118] Sub Release Curve [119] Sub Filter Mode [128] Sub_Filter_Key_Tracking [129] Sub_Filter_Cutoff [130] Sub Filter Cutoff Mod Source [131] Sub Filter Cutoff Mod Amount [132] Sub_Filter_Reso

[133] Sub Shifter Mix [134] Sub Shifter [135] Sub Shifter Mod Source [136] Sub Shifter Mod Amount [137] Sub Shifter Range [138] Sub Shifter Feedback [139] Sub Shifter Mode [140] Send Sub To [141] Sub_Bend [142] Noise Type [143] Noise Volume [144] Noise Pan [145] Noise Attack [146] Noise Attack Curve [147] Noise_Hold [148] Noise Decay [149] Noise Decay Curve [150] Noise Sustain [151] Noise Release [152] Noise_Release_Curve [153] Noise_Filter_Mode [154] Noise Filter Key Tracking [155] Noise Filter Cutoff [156] Noise Filter Cutoff Mod Source [157] Noise Filter Cutoff Mod Amount [158] Noise_Filter_Reso [159] Noise Shifter Mix [160] Noise Shifter [161] Noise Shifter Mod Source [162] Noise Shifter Mod Amount [163] Noise Shifter Range [164] Noise Shifter Feedback [165] Noise Shifter Mode [166] Send Noise To [167] Super_Saw_Amount [168] Super Saw Tuning [169] Super_Saw_Fine_Tuning [170] Super Saw Volume [171] Super_Saw_Pan [172] Super Saw Attack [173] Super Saw Attack Curve [174] Super_Saw_Hold [175] Super_Saw_Decay [176] Super Saw Decay Curve [177] Super_Saw_Sustain [178] Super Saw Release [179] Super Saw Release Curve [180] Super Saw Filter Mode [181] Super Saw Filter Key Tracking [182] Super_Saw_Filter_Cutoff [183] Super Saw Filter Cutoff Mod Source [184] Super Saw Filter Cutoff Mod Amount [185] Super Saw Filter Reso [186] Super_Saw_Shifter_Mix

[187] Super Saw Shifter [188] Super_Saw_Shifter_Mod_Source [189] Super Saw Shifter Mod Amount [190] Super Saw Shifter Range [191] Super Saw Shifter Feedback [192] Super Saw Shifter Mode [193] Send Super Saw To [194] Super_Saw_Bend [195] Pitch_Wheel_Amount [196] Pitch Wheel Destination [197] Bend Depth [198] Bend Attack [199] Bend_Attack_Curve [200] Bend Hold [201] Bend_Decay [202] Bend Decay Curve [203] Bend Sustain [204] Bend Release [205] Bend Release Curve [206] LFO_Shape [207] LFO_Rate [208] LFO Sync Switch [209] LFO Rate Synced [210] LFO_Retrigger_Switch [211] Glide Time [212] Glide_Time_Mod_Source [213] Glide_Time_Mod_Amount [214] Glide Mode [215] Delay Switch [216] Delay_Time [217] Delay_Sync_Switch [218] Delay_Sync [219] Delay_Feedback [220] Delay Ratio [221] Delay Damping [222] Delay Mix [223] Send_Delay_To [224] Reverb Switch [225] Reverb_Time [226] Reverb Pre Delay [227] Reverb Damping [228] Reverb Mix [229] Chorus_Switch [230] Chorus_Modulation_Type [231] Chorus_Rate [232] Chorus Depth [233] Chorus Delay [234] Chorus_Voices_Amount [235] Chorus Mix [236] Send_Chorus_To [237] Mono_Poly [238] Master Tuning [239] Master Volume

9 Device Remote information

	Scope				
Manufacturer				Model	
Oenkenstein Audio			nl.oen	kenstein.DIC	E
Remotable	Min		Max	Input type	Output type
Sine Tuning		0	4194304	Value	ValueOutput
Sine Fine Tuning		0	4194304	Value	ValueOutput
Sine Volume		0	4194304	Value	ValueOutput
Sine Pan		0	4194304	Value	ValueOutput
Sine Attack		0	4194304	Value	ValueOutput
Sine Attack Curve		0	4194304	Value	ValueOutput
Sine Hold		0	4194304	Value	ValueOutput
Sine Decay		0	4194304	Value	ValueOutput
Sine Decay Curve		0	4194304	Value	ValueOutput
Sine Sustain		0	4194304	Value	ValueOutput
Sine Release		0	4194304	Value	ValueOutput
Sine Release Curve		0	4194304	Value	ValueOutput
Sine Filter Mode		0	5	Value	ValueOutput
Sine Key Filter Tracking		0	4194304	Value	ValueOutput
Sine Filter Cutoff		0	4194304	Value	ValueOutput
Sine Filter Cutoff Mod Source		0	13	Value	ValueOutput
Sine Filter Cutoff Mod Amount		0	4194304	Value	ValueOutput
Sine Filter Reso		0	4194304	Value	ValueOutput
Sine Shifter Mix		0	4194304	Value	ValueOutput
Sine Shifter		0	4194304	Value	ValueOutput
Sine Shifter Mod Source		0	12	Value	ValueOutput
Sine Shifter Mod Amount		0	4194304	Value	ValueOutput
Sine Shifter Range		0	4194304	Value	ValueOutput
Sine Shifter Feedback		0	4194304	Value	ValueOutput
Sine Shifter Mode		0	3	Value	ValueOutput
Send Sine To		0	4	Value	ValueOutput
Sine Bend		0	1	Toggle	ValueOutput
Pulse Width		0	4194304	Value	ValueOutput
Pulse Tuning		0		Value	ValueOutput
Pulse Fine Tuning		0	4194304	Value	ValueOutput
Pulse Volume		0	4194304		ValueOutput
Pulse Pan		0	4194304		ValueOutput
Pulse Attack		0	4194304		ValueOutput
Pulse Attack Curve		0	4194304	Value	ValueOutput
Pulse Hold		0	4194304	Value	ValueOutput
Pulse Decay			4194304		ValueOutput
Pulse Decay Curve		0	4194304		ValueOutput
Pulse Sustain		0	4194304	Value	ValueOutput
Pulse Release		0	4194304	Value	ValueOutput
Pulse Release Curve		0	4194304		ValueOutput
Pulse Filter Mode		0	5	Value	ValueOutput
Pulse Filter Key Tracking		0	4194304		ValueOutput
Pulse Filter Cutoff		0	4194304		ValueOutput
Pulse Filter Cutoff Mod Source		0		Value	ValueOutput
Pulse Filter Cutoff Mod Amount		0	4194304		ValueOutput
Pulse Filter Reso		0	4194304	Value	ValueOutput

	-			
Pulse Shifter Mix	-	4194304		ValueOutput
Pulse Shifter	0	4194304		ValueOutput
Pulse Shifter Mod Source	0		Value	ValueOutput
Pulse Shifter Mod Amount	0	4194304		ValueOutput
Pulse Shifter Range	0	4194304		ValueOutput
Pulse Shifter Feedback	0	4194304		ValueOutput
Pulse Shifter Mode	0		Value	ValueOutput
Send Pulse To	0	4	Value	ValueOutput
Pulse Bend	0	1	Toggle	ValueOutput
Triangle Tuning	0	4194304		ValueOutput
Triangle Fine Tuning	0	4194304	Value	ValueOutput
Triangle Volume	0	4194304	Value	ValueOutput
Triangle Pan	0	4194304	Value	ValueOutput
Triangle Attack	0	4194304	Value	ValueOutput
Triangle Attack Curve	0	4194304	Value	ValueOutput
Triangle Hold	0	4194304	Value	ValueOutput
Triangle Decay	0	4194304	Value	ValueOutput
Triangle Decay Curve	0	4194304	Value	ValueOutput
Triangle Sustain	0	4194304	Value	ValueOutput
Triangle Release	0	4194304	Value	ValueOutput
Triangle Release Curve	0	4194304	Value	ValueOutput
Triangle Filter Mode	0	5	Value	ValueOutput
Triangle Filter Key Tracking	0	4194304	Value	ValueOutput
Triangle Filter Cutoff	0	4194304		ValueOutput
Triangle Filter Cutoff Mod Source	0	13	Value	ValueOutput
Triangle Filter Cutoff Mod Amount	0	4194304		ValueOutput
Triangle Filter Reso	0	4194304		ValueOutput
Triangle Shifter Mix	0	4194304		ValueOutput
Triangle Shifter	0	4194304		ValueOutput
Triangle Shifter Mod Source	0		Value	ValueOutput
Triangle Shifter Mod Amount	0	4194304		ValueOutput
Triangle Shifter Range	0	4194304		ValueOutput
Triangle Shifter Feedback	0	4194304		ValueOutput
Triangle Shifter Mode	0		Value	ValueOutput
Send Triangle To	0	-	Value	ValueOutput
Triangle Bend	0		Toggle	ValueOutput
Sub Tuning	0	4194304		ValueOutput
Sub Fine Tuning	0	4194304		ValueOutput
Sub Volume	0	4194304		ValueOutput
Sub Volume	0	4194304		ValueOutput
Sub Fail	0	4194304		ValueOutput
Sub Attack Curve	_	4194304		ValueOutput
	0			•
Sub Hold	0	4194304		ValueOutput
Sub Decay	0	4194304		ValueOutput
Sub Decay Curve		4194304		ValueOutput
Sub Sustain	0	4194304		ValueOutput
Sub Release	0	4194304		ValueOutput
Sub Release Curve	0	4194304		ValueOutput
Sub Filter Mode	0		Value	ValueOutput
Sub Filter Key Tracking	0	4194304		ValueOutput
Sub Filter Cutoff	0	4194304		ValueOutput
Sub Filter Cutoff Mod Source	0		Value	ValueOutput
Sub Filter Cutoff Mod Amount	0	4194304		ValueOutput
Sub Filter Reso	0	4194304	Value	ValueOutput

Sub Shifter Mix	0	4194304		ValueOutput
Sub Shifter	0	4194304		ValueOutput
Sub Shifter Mod Source	0		Value	ValueOutput
Sub Shifter Mod Amount	0	4194304		ValueOutput
Sub Shifter Range	0	4194304		ValueOutput
Sub Shifter Feedback	0	4194304	Value	ValueOutput
Sub Shifter Mode	0	3	Value	ValueOutput
Send Sub To	0	4	Value	ValueOutput
Sub Bend	0	1	Toggle	ValueOutput
Noise Type	0	-	Value	ValueOutput
Noise Volume	0	4194304	Value	ValueOutput
Noise Pan	0	4194304	Value	ValueOutput
Noise Attack	0	4194304	Value	ValueOutput
Noise Attack Curve	0	4194304	Value	ValueOutput
Noise Hold	0	4194304	Value	ValueOutput
Noise Decay	0	4194304	Value	ValueOutput
Noise Decay Curve	0	4194304	Value	ValueOutput
Noise Sustain	0	4194304	Value	ValueOutput
Noise Release	0	4194304	Value	ValueOutput
Noise Release Curve	0	4194304	Value	ValueOutput
Noise Filter Mode	0	5	Value	ValueOutput
Noise Filter Key Tracking	0	4194304	Value	ValueOutput
Noise Filter Cutoff	0	4194304	Value	ValueOutput
Noise Filter Cutoff Mod Source	0	13	Value	ValueOutput
Noise Filter Cutoff Mod Amount	0	4194304	Value	ValueOutput
Noise Filter Reso	0	4194304	Value	ValueOutput
Noise Shifter Mix	0	4194304	Value	ValueOutput
Noise Shifter	0	4194304	Value	ValueOutput
Noise Shifter Mod Source	0	12	Value	ValueOutput
Noise Shifter Mod Amount	0	4194304	Value	ValueOutput
Noise Shifter Range	0	4194304	Value	ValueOutput
Noise Shifter Feedback	0	4194304	Value	ValueOutput
Noise Shifter Mode	0	3	Value	ValueOutput
Send Noise To	0	4	Value	ValueOutput
Super Saw Amount	0	6	Value	ValueOutput
Super Saw Tuning	0	4194304	Value	ValueOutput
Super Saw Fine Tuning	0	4194304	Value	ValueOutput
Super Saw Volume	0	4194304	Value	ValueOutput
Super Saw Pan	0	4194304	Value	ValueOutput
Super Saw Attack	0	4194304	Value	ValueOutput
Super Saw Attack Curve	0	4194304	Value	ValueOutput
Super Saw Hold	0	4194304	Value	ValueOutput
Super Saw Decay	0	4194304		ValueOutput
Super Saw Decay Curve	0	4194304	Value	ValueOutput
Super Saw Sustain	0	4194304	Value	ValueOutput
Super Saw Release	0	4194304		ValueOutput
Super Saw Release Curve	0	4194304		ValueOutput
Super Saw Filter Mode	0		Value	ValueOutput
, Super Saw Filter Key Tracking	0	4194304		ValueOutput
Super Saw Filter Cutoff	0	4194304		ValueOutput
Super Saw Filter Cutoff Mod Source	0		Value	ValueOutput
Super Saw Filter Cutoff Mod Amount	0	4194304		ValueOutput
Super Saw Filter Reso	-	4194304		ValueOutput
Super Saw Shifter Mix	0	4194304		ValueOutput
· · · · · · · · · · · · · · · · · · ·	5			

Super Saw Shifter	0	4194304	Value	ValueOutput
Super Saw Shifter Mod Source	0		Value	ValueOutput
Super Saw Shifter Mod Amount	0	4194304		ValueOutput
Super Saw Shifter Range	0	4194304		ValueOutput
Super Saw Shifter Feedback	0	4194304		ValueOutput
Super Saw Shifter Mode	0	-	Value	ValueOutput
Send Super Saw To	0	4	Value	ValueOutput
Super Saw Bend	0	1	Toggle	ValueOutput
Pitch Wheel Amount	0		Value	ValueOutput
Pitch Wheel Destination	0	-	Value	ValueOutput
Bend Depth	0	4194304		ValueOutput
Bend Attack	0	4194304	Value	ValueOutput
Bend Attack Curve	0	4194304	Value	ValueOutput
Bend Hold	0	4194304	Value	ValueOutput
Bend Decay	0	4194304	Value	ValueOutput
Bend Decay Curve	0	4194304	Value	ValueOutput
Bend Sustain	0	4194304	Value	ValueOutput
Bend Release	0	4194304	Value	ValueOutput
Bend Release Curve	0	4194304	Value	ValueOutput
LFO Shape	0	5	Value	ValueOutput
LFO Rate	0	4194304	Value	ValueOutput
LFO Sync Switch	0	1	Toggle	ValueOutput
LFO Rate Synced	0	12	Value	ValueOutput
LFO Retrigger Switch	0	1	Toggle	ValueOutput
Glide Time	0	4194304	Value	ValueOutput
Glide Time Mod Source	0	11	Value	ValueOutput
Glide Time Mod Amount	0	4194304	Value	ValueOutput
Glide Mode	0	2	Value	ValueOutput
Delay Switch	0	1	Toggle	ValueOutput
Delay Time	0	100	Value	ValueOutput
Delay Sync Switch	0	1	Toggle	ValueOutput
Delay Sync	0	12	Value	ValueOutput
Delay Feedback	0	4194304	Value	ValueOutput
Delay Ratio	0	100	Value	ValueOutput
Delay Damping	0	4194304	Value	ValueOutput
Delay Mix	0	4194304	Value	ValueOutput
Send Delay To	0	2	Value	ValueOutput
Reverb Switch	0	1	Toggle	ValueOutput
Reverb Time	0	4194304	Value	ValueOutput
Reverb Pre Delay	0	100	Value	ValueOutput
Reverb Damping	0	4194304	Value	ValueOutput
Reverb Mix	0	4194304	Value	ValueOutput
Chorus Switch	0	1	Toggle	ValueOutput
Chorus Modulation Type	0	1	Toggle	ValueOutput
Chorus Rate	0	100	Value	ValueOutput
Chorus Depth	0	100	Value	ValueOutput
Chorus Delay	0	100	Value	ValueOutput
Chorus Voices Amount	0	2	Value	ValueOutput
Chorus Mix	0	4194304	Value	ValueOutput
Send Chorus To	0	1	Toggle	ValueOutput
Mono Poly	0	1	Toggle	ValueOutput
Master Tuning	0	4194304	Value	ValueOutput
Master Volume	0	4194304	Value	ValueOutput
Randomize Switch	0	1	Toggle	ValueOutput
			-	

Percentage	0	4194304	Value	ValueOutput
Filters Switch	0	1	Toggle	ValueOutput
Shifter Switch	0	1	Toggle	ValueOutput
Mod Wheel	0	127	Value	ValueOutput
Breath Control	0	127	Value	ValueOutput
Expression	0	127	Value	ValueOutput
Sustain Pedal	0	127	Value	ValueOutput
Aftertouch	0	127	Value	ValueOutput
Pitch Bend	-8192	8191	Value	ValueOutput
Device Name	0	0	-	TextOutput
Patch Name	0	0	-	TextOutput
Select Patch Delta	0	0	Delta	TextOutput
Select Previous Patch	0	0	Trig	TextOutput
Select Next Patch	0	0	Trig	TextOutput